
Example 1: Explicit confirmation with correct value 
 

1 S:  Starting at what time do you need the room? 
2 U: [ STARTI NG AT TEN A_M /  0. 45]  
 Starting at ten a.m. 
3 S: Did you say you wanted the room starting at ten a.m.? 
4 U: [ GUEST UNTI L ONE /  0. 89]  
 Yes until noon 

Example 3: Implicit confirmation with incorrect value 
 

1 S:  How may I help you? 
2 U: [ THREE TO RESERVE A ROOM /  0. 65]  
 I’d like to reserve a room 
3 S: starting at three p.m. … For which day do you need the 
 conference room? 
4 U: [ CAN YOU DETAI LS TI ME]  -  NONU/ 0. 00 
 I need a different time 

Figure 1. Sample explicit and implicit confirmations.  
System turns are prefixed by (S); user turns are prefixed by (U); 
the speech recognition results and associated confidence scores  

are represented [ i n bet ween br acket s]  

Example 2: Implicit confirmation with correct value 
 

1 S:  For when do you need the room? 
2 U: [ NEXT THURSDAY /  0. 75]  
 Next Thursday 
3 S: a room for Thursday, August 26th… Starting at what time 
 do you need the room? 
4 U: [ FI VE TO SEVEN P_M /  0. 58]  
 Five to seven p.m. 
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ABSTRACT 
 
We propose a novel approach for constructing more accurate 
beliefs over concept values in spoken dialog systems by 
integrating information across multiple turns in the conversation. 
In particular, we focus our attention on updating the confidence 
score of the top hypothesis for a concept, in light of subsequent 
user responses to system confirmation actions. Our data-driven 
approach bridges previous work in confidence annotation and 
correction detection, providing a unified framework for belief 
updating. The approach significantly outperforms heuristic rules 
currently used in most spoken dialog systems. 

 

1. INTRODUCTION 
 
A key limitation in today’s spoken language interfaces is their 
lack of robustness when faced with understanding errors. The 
large majority of such errors arise from the speech recognition 
process. The inherent difficulties of automatic speech 
recognition are further increased by the conditions under which 
spoken dialog systems typically operate: spontaneous speech, 
increasingly larger vocabularies, large user populations, 
variability in the quality of the input lines, etc. In these 
circumstances, average word error rates of 20% (and up to 40-
50% for non-natives) are quite common. Unless mediated by 
better error awareness and robust recovery mechanisms, these 
errors propagate to subsequent stages of processing in a dialog 
system and exert a considerable negative impact on the quality 
and ultimately the success of the interaction [11,13].  

Left unchecked, speech recognition errors can lead to two 
types of problems in a spoken dialog system: non-under-
standings, and misunderstandings. In a non-understanding, the 
system fails to obtain any semantic interpretation of the user’s 
input. For instance, if the parsing stage lacks a certain degree of 
robustness, even the smallest speech recognition error can 
compromise the entire language understanding process. In 
contrast, in a misunderstanding the system does construct a 
semantic interpretation of the user’s turn, but this interpretation 
is incorrect. In the absence of accurate mechanisms for detecting 
such errors, systems will take misunderstandings as fact and act 
based on invalid information.  

We argue that, as a prerequisite for increasing robustness 
and making better decisions, spoken dialog systems must be able 
to accurately assess the reliability of the information they use. 
The work we present in this paper aims to endow these systems 

with the ability to construct more accurate beliefs by 
integrating information across multiple turns in the dialog. 
Typically, spoken dialog systems rely on recognition confidence 
scores to guard against potential misunderstandings. While 
confidence scores can provide an initial assessment for the 
reliability of the information obtained from the user, ideally a 
system should leverage information available in subsequent user 
responses in order to update and improve the accuracy of its 
beliefs. Take for instance example 3 in Figure 1. Here, the 
system uses the recognition confidence score to form an initial 
belief about the start_time concept: the system believes that the 
start time is 3 p.m. with probability 0.65. Next, the system 
performs an implicit confirmation followed by a request for the 
date concept. The next recognition result is ” CAN YOU 
DETAI LS TI ME” , which amounts to a non-understanding. In 
light of this interaction (as well as the initial confidence score) 
what should the system now believe about the start_time concept?  

In this paper, we present a data-driven solution to this belief 
updating problem. We start by discussing related work in 



Section 2, and we argue that the heuristic approaches currently 
used for this purpose are suboptimal. Next, in Section 3 we 
precisely define and formalize the belief updating problem, and 
we introduce a reduced (yet useful in practice) version of the 
problem which we will address in the rest of the paper. In 
Section 4 we describe the data that we collected and used in this 
work, and in Section 5 we present an analysis of user responses 
to system confirmation actions. In Section 6 we present a simple 
machine learning approach for the belief updating problem. 
Experimental results indicate that the proposed approach 
constructs significantly more accurate beliefs than the heuristic 
rules currently used in most spoken dialog systems. Finally, in 
Section 7 we conclude and discuss future plans. 

 
2. RELATED WORK 

 
We have already noted confidence annotation as an important 
starting point towards continuous belief assessment in spoken 
dialog systems. Traditionally, confidence annotation schemes 
were focused on detecting word-level errors [1,4] and operated 
exclusively with information from the decoder (e.g. acoustic and 
language model and lattice information). More recently, various 
machine learning approaches have been proposed for detecting 
semantic errors (e.g. misunderstandings) and building semantic 
confidence scores [3,10] that are more appropriate for use in 
spoken dialog systems. These approaches use labeled in-domain 
data and typically integrate information from various sources of 
knowledge in the spoken dialog system. Generally, these 
techniques can be used to construct fairly accurate, but not 
perfect semantic confidence annotators. 

Spoken dialog systems use the confidence score to form an 
initial assessment of the reliability of the concepts acquired from 
an input. Based on this score, a system can decide to accept the 
input, reject it, or engage in a confirmation strategy. Two 
confirmation strategies are widely used: explicit confirmation 
and implicit confirmation (see Figure 1). The tradeoff between 
these strategies is fairly well understood: explicit confirmations 
take an extra dialog turn; user responses to these confirmations 
are generally predictable and easy to handle. In contrast, implicit 
confirmations are more efficient if the value confirmed is indeed 
correct – no dialog turn is lost. However, an implicit 
confirmation with an incorrect value can increase confusion and 
create a greater cognitive load for the user [14]. This in turn can 
lead to a wider spectrum of possible user responses that can be 
more difficult to anticipate and therefore recognize correctly. 
Given these tradeoffs, most systems use implicit confirmations 
when they are fairly confident that the information to be verified 
is indeed correct and explicit confirmations when the confidence 
is lower. Additionally a system might decide to consider a 
concept grounded without taking any further action if the 
confidence score is very high, or reject the value altogether if the 
confidence score is very low. 

Typically, very simple heuristic rules are used to update 
beliefs in light of user responses to various confirmation actions. 
For instance, after explicit confirmations, most systems consider 
the value grounded if they hear a yes-type answer (e.g. yes, 
correct, that’s right) or erase the hypothesis if they hear a no-
type answer (e.g. no, that’s wrong). Additionally, if the user 
provides a new value for the concept, this will overwrite the old 
value. In the case of implicit confirmations, most systems rely on 
the user to overwrite the concept if the confirmed value is in-

correct. We believe these heuristic approaches are suboptimal for 
a number of reasons. As example 3 in Figure 1 illustrates, users 
don’ t always overwrite slots. Previous studies have revealed that 
user responses following implicit confirmations cover a wide 
language spectrum [6], and simple heuristic rules will fall short 
on that account. Furthermore, user responses to confirmation 
actions are also subject to speech recognition errors, which 
renders the problem even more difficult for simple rule-based 
approaches (see for instance turn 4 from example 1 and example 
3 in Figure 1). Finally, these heuristic rules lead to rather 
polarized beliefs (e.g. trust that value / don’ t trust that value), 
which do not accurately capture the degree of uncertainty the 
system should have. In light of the shallow solutions currently 
used for belief updating, results such as “users discovering errors 
through implicit confirmations are less likely to get back on 
track”  [12] are not so surprising. The problem might not lie with 
the implicit confirmations per se, but rather with an inability to 
handle user responses and to accurately update beliefs. 

Apart from confidence annotation, another vein of research 
that is relevant for this problem is correction detection [5,6]. 
Here, the task is to detect whether or not the user is currently 
attempting to correct a previous system misunderstanding. 
Machine learning techniques similar to the ones used for 
detecting misunderstandings are also used for detecting 
corrections. The resulting correction detectors are fairly accurate, 
but not perfect. Some similarities with the work we report in this 
paper can be found in previous work by Krahmer and Swerts [6]. 
In an effort to better understand the spectrum of user responses 
to system confirmation actions, Krahmer and Swerts analyzed 
positive and negative cues to implicit and explicit confirmations 
in a corpus of dialogs collected from a Dutch train-table system 
(we have repeated their analysis on data collected in a room-
reservation system and we report the results in Section 5). 
Furthermore, Krahmer and Swerts showed that a memory-based 
learning approach can predict with a fairly high accuracy 
whether or not the previous confirmation contained an error. 
However, as the authors pointed out, their results were obtained 
on a small dataset, and using transcript information (as opposed 
to actual recognition results) as well as hand-annotated features, 
some of which are not available at run-time. Furthermore, 
Krahmer and Swerts were interested in detecting errors (a binary 
task), while we are interested in constructing accurate concept-
level beliefs, which explicitly represent the degree of uncertainty 
the system has. 

While both semantic confidence annotation and correction 
detection schemes are clearly valuable tools for belief updating, 
taken in isolation they do not provide a solution to this problem. 
We believe the solution lies in integrating confidence annotation 
and correction detection into a unified framework that would 
allow spoken dialog systems to continuously track their beliefs.  

The idea of explicitly representing uncertainty and updating 
beliefs through time also appears in previous work by Paek and 
Horvitz [8]. In the DeepListener project, the authors used a 
Dynamic Bayesian Network to continuously update the belief 
over a user’s goal in a simple command-and-control application. 
In contrast, in our work we are interested in updating beliefs 
over concept values in the context of a more complex task-
oriented spoken dialog system. Furthermore, if in their work the 
network structure and parameters were handcrafted by domain 
experts, in our approach the model parameters are learned from 
data. 



3. THE BELIEF UPDATING PROBLEM 
 

We will now formalize the belief updating problem. Let us start 
by defining a few terms. Let C denote a concept that the system 
acquires from the user (e.g. date, start_time, end_time). By 
Belieft(C), or system belief over a concept C, we denote a 
representation of the system’s uncertainty in the value of concept 
C at a certain time t. Let SA(C) denote the system action at time 
t, with respect to concept C. For instance, in turn 3, example 2, 
Figure 1 the system implicitly confirms the date and requests the 
start time. Therefore, with respect to the date concept, the system 
action can be described as: 
 

SA(date) = ImplicitConfirm(date) + Request(Other) 
 

With respect to the start_time concept, we have: 
 

SA(start_time) = ImplicitConfirm(Other) + Request(start_time) 
 

Furthermore, let R denote the user response to the system action, 
as this response is perceived by the system. Then, the belief 
updating problem can be stated as follows:  
 

given an initial belief over a concept Belieft(C), a system 
action SA(C) and a user response R, compute the 
updated belief Belieft+1(C). 
 

The belief over a concept is most accurately represented via 
a full probability distribution over all the possible concept 
values. However, this full-blown representation can be difficult 
to handle. From a practical perspective, it is very improbable that 
a spoken dialog system will “hear”  throughout an interaction 
more than 3 or 4 conflicting values for a concept. For instance, 
in the corpus we collected (see Section 3), the maximum number 
of conflicting hypotheses accumulated through interaction for a 
concept was 3. Moreover, the system heard more than 1 
hypothesis per concept in only 6.9% of cases. We believe that, 
even if a system used information from multiple recognition 
hypotheses (our system, like most other systems, did not), the 
number of different hypotheses that could be accumulated 
through interaction would rarely exceed 3 or 4.  

Under these circumstances, a compressed representation of 
belief has the potential of greatly simplifying the problem 
without causing a corresponding decrement in performance. In 
this paper we report on the development of a belief updating 
scheme in which the belief over a concept is represented by the 
confidence score of the current top hypothesis for that concept. 
Moreover, we focus our attention only on updating beliefs in 
light of implicit or explicit confirmations (in the more general 
case the system could update its beliefs continuously, in all 
concepts, at all points in time). The reduced version of the belief 
updating problem that we use can therefore be stated as follows: 

 

given an initial confidence score for the top hypothesis h 
for a concept C, construct an updated confidence score 
for the hypothesis h, in light of the system confirmation 
action SA(C), and the follow-up user response R. 

 
4. DATA 

 
The work presented in this paper relies on data collected in an 
experiment [2] with RoomLine [9], a mixed-initiative spoken 
dialog system that assists users in making conference room 
reservations. The system finds the list of available rooms that 
satisfy an initial set of user-specified constraints (e.g. date and 
time, location, size, equipment, etc). The system then engages in 

a follow-up negotiation dialog to present this information to the 
user and identify which room best matches the user’s needs. 
Sample interactions with the system are available online [9]. 
During the experiment 46 participants (first-time users) 
interacted with the system; each participant attempted a 
maximum of 10 scenario-based interactions. The scenarios had 
different degrees of difficulty and covered all aspects of the 
system’s functionality. The collected corpus contains 449 
dialogs and 8278 user turns.  

The user speech was orthographically transcribed. Based on 
the transcriptions, we manually labeled the correct value for each 
concept (as specified by the user) at each turn, as well as whether 
or not the user was trying to perform a correction on each of the 
concepts present in the previous system turn.  

To guard against potential misunderstandings, the system 
used both explicit and implicit confirmations. The strategies 
were engaged following a commonly used confidence threshold 
model (see Section 2). After the confirmation actions, the system 
used a set of simple heuristic rules to update the confidence 
score of the confirmed hypothesis. For explicit confirmations the 
system boosted the confidence score to 0.95 when the perceived 
user response contained a positive marker (e.g. yes, right) and 
deleted the hypothesis if the response included a negative marker 
(e.g. no, wrong)  For implicit confirmations, the system would 
discredit the hypothesis if it heard a negative marker in the user 
response and the implicit confirmation was not followed by a 
yes/no question; if the user response included a new value for 
the confirmed concept, the system overwrote the old value 
(hence deleted the initial hypothesis); finally, for all other 
responses the system increased the score of the initial hypothesis 
to 0.95. Note that sometimes multiple confirmation actions were 
executed in a single turn (e.g. an implicit confirmation followed 
by an explicit confirmation on a different concept). 

Apart from the explicit and implicit confirmations which 
where engaged by the error handling module, there were a 
number of other system turns that included information previou-
sly acquired from the user. For instance, the system might 
respond: ”I found 10 rooms this Friday between 2 and 4 p.m. Would 
you like a small room or a large one?” While the main purpose of 
this turn is to provide information to the user, the turn also acts 
as an implicit confirmation for the date, start_time and end_time 
concepts. In the sequel, we will refer to these as unplanned 
implicit confirmations. The system did not intend them as error 
handling actions; rather the implicit confirmations appeared as a 
side-effect of the design of system prompts. Moreover, the 
system did not update its belief over the confirmed concepts in 
this case. For these reasons, we analyzed these unplanned 
implicit confirmations separately from the planned ones. 

 
5.  USER RESPONSE ANALYSIS 

 
To gain a better understanding of the confirmation strategies and 
the challenges that we are facing with respect to belief updating, 
we performed an analysis of user responses to these strategies.  

Following Krahmer and Swerts [6], we divided user 
responses into three response-types according to whether they 
contain positive markers – yes (e.g. yes, correct, right), negative 
markers – no (e.g. no, wrong), or no positive or negative 
markers – other. The classification was performed twice: once 
using the transcripts, and once using the output from the 
recognition system. We then cross-tabulated these classes against 



whether the system was confirming a correct or an incorrect 
concept value. The results are presented in Table 1.A-F. 

As Table 1.A shows, user responses following explicit 
confirmations included positive markers in 94% of the cases 
when the valued confirmed was indeed correct. In contrast, the 
answers included a negative marker in only 72% of the explicit 
confirmations with incorrect values. This discrepancy is 
consistent with prior observations made by Krahmer and Swerts 
(presented in brackets in the Table 1.A). It indicates that in a 
significant number of cases (27%) users attempted to correct the 
system by other means than a negative answer to the explicit 
confirmation question. A closer look at these instances reveals 
that in most of these cases (~70%) users repeated the correct 
value for the concept. Other times, users ignored the system’s 
explicit confirmation and tried to change the focus of the 
conversation. Prompted by this observation, we cross-tabulated 
users’  correction attempts versus the correctness of the value the 
system tried to verify. The results are shown in Table 2.A. We 
noted that 10% of the incorrect explicit confirmations (29 of the 
29+250=279 cases) were not corrected by the users – these are 
mostly the cases in which users were trying to shift the focus of 
the conversation. Finally there were a small number of other-
type responses on explicit confirmations which stemmed from 
audio end-pointing errors and turn-overtaking issues. 

A comparison between Tables 1.A and 1.B reveals an 
increased proportion of the other-type responses in the decoded 
results. This difference is explained by misrecognitions of YES / 
NO into acoustically similar words (e.g. THIS / SMALL). The 
difference is also present for both planned and unplanned 
implicit confirmations, and highlights again the fact that the 
presence of recognition errors increases the difficulties of 
detecting corrections and building accurate beliefs. 

For implicit confirmations, there are much fewer yes- and 
no-type responses, and the other-type responses dominate (see 
Figure 1.C). For correct implicit confirmations this large number 
is expected – users mostly answer the follow-up system question. 

The large number of other-type responses on incorrect implicit 
confirmations is explained by the fact that oftentimes users do 
not attempt to correct the incorrect concept values implicitly 
confirmed by the system. Table 2.B. shows that for 51.5% (118 / 
118+111=229) of incorrect implicit confirmations users are not 
attempting to correct the system.  

A closer analysis of these instances led to several 
observations. First, although in these 118 cases users did not 
immediately correct the system’s incorrect implicit confirmation, 
in 49 of these cases (~40%) users did attempt to correct the error 
in a later turn. More interestingly, the analysis revealed that 
users interact with the system strategically: they correct the 
errors which have to be recovered for the successful completion 
of the task (we shall refer to these as critical errors), and mostly 
ignore the others. Given the nature of the domain, certain 
scenarios could be completed by users in different ways. This in 
turn rendered some concepts more important for task success 
than others. For instance, if the system accidentally mis-
recognized that the user wanted a room with a whiteboard, this 
incorrectly filled concept (equipment) had no impact on task 
success if the goal was only to make a reservation for a room on 
Friday morning from 10 to 11. A user could ignore this system 
error altogether and still complete the task successfully. Out of 
the 49 later-turn corrections, 47 were on critical errors, and only 
2 on non-critical errors. At the same time, there were only 14 
critical errors that were never corrected, and hence had a direct 
contribution to task failure. These results confirm that users 
adapt their behaviors to their specific goals, and engage in 
corrections only when it is necessary to do so. 

Finally, for unplanned implicit confirmations, the distribu-
tion of response types is similar to the one for the planned 
implicit confirmations, and the same phenomenon of users not 
always correcting the system can be observed.  
 

6.  EXPERIMENTS AND RESULTS 
 

6.1. Approach 
 

The reduced form of the belief updating problem we address can 
be stated as follows: given an initial confidence score for a 
concept value to be confirmed, a system confirmation action, and 
the user response to that system action (as it was perceived by 
the system), compute an updated and more accurate confidence 
score for the value undergoing the confirmation. We used a 
machine learning approach.  

While detection of misunderstandings and corrections can 
be regarded as a binary classification task, our goal is to generate 
good probability estimates (a continuous value between 0 and 1 
which represents the system’s uncertainty). The “goodness”  of 

A. Explicit Confirmation (from transcripts) 
 Yes No Other 
Correct (1159) 94% [93 %] 0% [0%] 5% [7%] 
Incorrect (279) 1% [6%] 72% [57%] 27% [37%] 
 

Table 1. Cross-tabulation of response-type against correct and incorrect system confirmation actions. Percentage numbers reflect 
proportions from the correct and respectively incorrect confirmations. Bracketed numbers were reported by Krahmer and Swerts in a 

similar study of a Dutch train-timetable information system [6]. 

B. Explicit Confirmation (from decoded results) 
 Yes No Other 
Correct (1159) 87% 1% 12% 
Incorrect (279) 1% 61% 38% 
 

C. Implicit Confirmation (from transcripts) 
 Yes No Other 
Correct (554) 30% [0%] 7% [0%] 63% [100%] 
Incorrect (229) 6% [0%] 33% [15%]  61% [85%] 
 
D. Implicit Confirmation (from decoded results) 
 Yes No Other 
Correct (554) 28% 5% 67% 
Incorrect (229) 7% 27% 66% 
 

E. Unplanned Implicit Conf. (transcripts) 
 Yes No Other 
Correct (2725) 25%  19% 56% 
Incorrect (457) 12%  28%  60%  
 
F. Unplanned Implicit Conf. (decoded) 
 Yes No Other 
Correct (2725) 24%  17% 59% 
Incorrect (457) 10%  21%  69%  
 

A. Explicit Confirmation 
 User 

corrects 
User does 
not correct 

Correct 0 1159 
Incorrect 250 29 

B. Implicit Confirmation 
 User 

corrects 
User does 
not correct 

Correct 2 552 
Incorrect 111 118 

C. Unplanned Implicit Confirmation 
 User 

correct 
User does 
not correct 

Correct 11 2714 
Incorrect 138 319 

Table 2. Users’  correction attempts versus correctness of 
confirmed values. 



these probability estimates can be evaluated by computing the 
cross-entropy between the true distribution of the target values 
and the distribution predicted by the learned model (the smaller 
the cross-entropy, the better). When the target is binary, cross-
entropy equals the negative average log-posterior of the correct 
class. This metric is commonly referred to as soft-error. 
Discriminant classification techniques traditionally used for 
detecting misunderstandings and corrections (e.g. decision trees, 
memory-based learning, etc.) are inappropriate in this case since 
they focus on minimizing hard- rather than soft-error.  

A machine learning technique with good soft-metric 
performance is binary logistic regression. This method assumes a 
certain density model and learns parameters such as to maximize 
the average log-posterior of the correct class. Furthermore, this 
technique is sample efficient, and, when used in a stepwise 
approach, can also perform feature selection. We therefore 
decided to use a collection of stepwise logistic regression 
models. For each system action (explicit confirmation, implicit 
confirmation and unplanned implicit confirmation), we parti-
tioned the data according to the response-type of the recognition 
result (e.g. yes, no, other) and then trained a separate stepwise 
logistic regression model for each partition. The rationale for 
training separate models was that features are likely to work 
differently for each response-type. The proposed approach is 
equivalent with constructing a one-level logistic model tree 
(LMT) [7] for each system action, with the root node splitting on 
the response-type. 
 

6.2. Dataset: features and labels 
 

Our dataset contained 5403 data-points (1438 for explicit 
confirmation, 783 for implicit confirmation and 3182 for 
unplanned implicit confirmation). Each data-point describes a 
concept update: it specifies the concept and value undergoing 
the update, the initial system belief about that concept, the 
system confirmation action with respect to that concept, and a 
label which indicates if the value undergoing the confirmation 
was indeed correct or not (this was our target for learning).  

We identified a large number of features from different 
levels in the system, which could be relevant for the task at hand. 
All these features are available to the system at run-time. Given 
the space constraints, we only summarize the feature set below1. 

• Initial situation features: initial confidence score of the top 
hypothesis, the identity of the concept undergoing the 
update, current dialog state, turn number; 

• System action features: features describing other system 
actions taken in conjunction with the current confirmation; 

• Acoustic and prosodic features of the user response:  
duration, pitch (mean, min, max, range, min and max slope, 
plus normalized versions), speech rate, initial pause, etc.; 

• Lexical features of the user response: number of words, the 
presence / absence of lexical terms highly correlated with 
corrections; the terms were apriori identified by computing 
mutual information between these terms and corrections; 

• Grammatical features of the user response: number of 
grammar slots contained in the parse, the number of new 
slots, repeated slots, goodness of parse scores, etc.; 

• Dialog level features of the user response: features 
describing how well the response matched the current system 

                                                 
1 For the complete feature set, see: www.cs.cmu.edu/~dbohus/blf_upd/ 

expectation, whether the response contained a new value for 
the concept, etc. 

 

6.3. Results 
 

We trained the logistic model trees and evaluated them using 10-
fold cross validation. We compared the cross-validation results 
(both hard- and soft-error) against three baselines. The results 
are shown in Figure 1. The initial baseline reflects the accuracy 
of the initial system belief, before any update is performed. The 
heuristic baseline reflects the performance attained by the heuris-
tic update rule currently used by the system (see Section 4). 
Finally, we also report an oracle baseline. The user-response 
analysis from Section 5 revealed that users do not always correct 
system errors. As a result, even if we knew precisely when the 
user is correcting the system, we would not be able to construct 
absolutely perfect beliefs. If for instance we assumed that the 
concept is incorrect each time the user makes a correction we 
would still make a certain number of errors. The oracle baseline 
reflects the performance we would attain if we knew precisely 
when the user is correcting the system.  

As Figure 2 shows, the logistic model tree (LMT) produces 
significant improvements over the heuristic rule on both hard- 
and soft-error. For explicit confirmations, the simple heuristic 
rule used by the system bridges a large portion of the gap 
between the no-update and the oracle baseline: from 31.15% to 
8.41%. However, the logistic model tree performs even better, 
further reducing the hard-error rate from 8.41% to 3.57% 
(p=0.029), very close to the oracle performance of 2.71%. An 
even larger improvement is attained for updates after implicit 
confirmations. As expected, the heuristic rule faces more 

Figure 2. Performance comparison between logistic model 
tree (LMT) and several baselines (both hard and soft-error) 
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difficulties in this situation, and reduces the hard-error rate only 
from 30.4% to 23.37%. The logistic model tree again bridges the 
remaining gap from 23.37% to 16.15% (p=0.0094), yielding 
results very close to the oracle baseline (15.33%). For unplanned 
implicit confirmations, the belief updating problem is even more 
difficult. Usually in this case multiple concepts are confirmed in 
a single turn, and even if our features capture the fact that the 
user attempts to correct, it is often difficult to infer which 
concept is being corrected. The heuristic rule provides almost no 
improvement in performance over the initial baseline (the minor 
improvement comes from instances where the user is repeating 
the correct value and thus overwriting the concept). The learning 
approach produces a better result, although this time it bridges 
only half of the gap between the initial and oracle baselines, 
reducing the hard error from 15.4% to 12.64% (p=0.07). 

The discussion above has focused on hard-error. However, 
as we argued in subsection 6.1 we are really interested in good 
soft-error performance. Indeed, the proposed learning approach 
brings statistically significant improvements on the soft metric 
for each of the three confirmation types (see plots on the right-
hand side in Figure 2). It is interesting to notice that in the case 
of implicit confirmations (both planned and unplanned) the 
heuristic rule does not bring any gains; this happens largely due 
to the fact that the heuristically-updated beliefs are highly 
polarized (probabilities close to 0 or 1),  and do not accurately 
reflect the uncertainty the system has.  

Some of the most informative features for belief updating 
were: the initial confidence score, various prosodical features, 
expectation match, barge-in, various lexical features, the 
presence of repeated grammar slots, as well as the identity of the 
concept to be confirmed (concept-id). In fact, adding the 
concept-id led to significant gains in accuracy for belief updating 
following implicit confirmations. We believe this is related to 
our observations from Section 5. Since some of the concepts 
(e.g. date, start_time, end_time) are on average more important 
than others for the task at hand, adding knowledge into the belief 
updating process about the identity of the concept undergoing 
the confirmation helps the system better take into account the 
user responses to the implicit confirmation.  

 
7. CONCLUSION 

 
We have proposed a machine learning based approach for 
constructing more accurate beliefs in spoken dialog systems by 
integrating information over multiple turns in the conversation. 
In particular, we are interested in updating system beliefs in light 
of user responses to explicit and implicit confirmations. We have 
addressed a simplified yet practically very useful form of the 
belief updating problem, whereby the system belief is reduced to 
the confidence score of the top hypothesis. We have shown that 
a logistic model tree using features from different levels in the 
system can be trained to construct beliefs that are significantly 
more accurate than those produced by simple heuristic rules 
typically found in current systems. Our work has brought 
together previous insights from semantic confidence annotation 
and correction detection into a unified framework that allows 
spoken dialog systems to more accurately track their beliefs and 
avoid misunderstandings. 

In the process, our data analysis has corroborated prior 
studies that have shown that user responses to explicit and 
implicit confirmations cover a wide language spectrum. Further-

more, we have found that oftentimes users do not correct implicit 
confirmation actions containing incorrect values, unless recovery 
is essential for the task at hand. Rather, users consider the over-
all properties of the task and adjust their strategies accordingly.  

In light of the results we obtained on the reduced version of 
the belief updating problem, we are currently extending this 
work in several directions. First, we plan to use a more 
comprehensive, but still compact belief representation: n 
hypotheses plus “other” , where n is a small number like 2 or 3 
(the reduced version of the problem we addressed in this paper 
had n=1). Secondly, we plan to extract and use information from 
multiple hypotheses from the recognition engine. Finally, since 
users can attempt corrections at any point in the dialog, we plan 
to investigate the possibility of continuously updating beliefs, 
after all system actions (i.e. not only after confirmation actions).  
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