
Example 1: Explicit confirmation with correct value

1 S: Starting at what time do you need the room?
2 U: [STARTI NG AT TEN A_M / 0. 45]
 Starting at ten a.m.
3 S: Did you say you wanted the room starting at ten a.m.?
4 U: [GUEST UNTI L ONE / 0. 89]
 Yes until noon

Example 3: Implicit confirmation with incorrect value

1 S: How may I help you?
2 U: [THREE TO RESERVE A ROOM / 0. 65]
 I’d like to reserve a room
3 S: starting at three p.m. … For which day do you need the
 conference room?
4 U: [CAN YOU DETAI LS TI ME] - NONU/ 0. 00
 I need a different time

Figure 1. Sample explicit and implicit confirmations.
System turns are prefixed by (S); user turns are prefixed by (U);
the speech recognition results and associated confidence scores

are represented [i n bet ween br acket s]

Example 2: Implicit confirmation with correct value

1 S: For when do you need the room?
2 U: [NEXT THURSDAY / 0. 75]
 Next Thursday
3 S: a room for Thursday, August 26th… Starting at what time
 do you need the room?
4 U: [FI VE TO SEVEN P_M / 0. 58]
 Five to seven p.m.

CONSTRUCTING ACCURATE BELIEFS IN SPOKEN DIALOG SYSTEMS

Dan Bohus Alexander I. Rudnicky

Computer Science Department,
Carnegie Mellon University,

Pittsburgh, PA, 15217

ABSTRACT

We propose a novel approach for constructing more accurate
beliefs over concept values in spoken dialog systems by
integrating information across multiple turns in the conversation.
In particular, we focus our attention on updating the confidence
score of the top hypothesis for a concept, in light of subsequent
user responses to system confirmation actions. Our data-driven
approach bridges previous work in confidence annotation and
correction detection, providing a unified framework for belief
updating. The approach significantly outperforms heuristic rules
currently used in most spoken dialog systems.

1. INTRODUCTION

A key limitation in today’s spoken language interfaces is their
lack of robustness when faced with understanding errors. The
large majority of such errors arise from the speech recognition
process. The inherent difficulties of automatic speech
recognition are further increased by the conditions under which
spoken dialog systems typically operate: spontaneous speech,
increasingly larger vocabularies, large user populations,
variability in the quality of the input lines, etc. In these
circumstances, average word error rates of 20% (and up to 40-
50% for non-natives) are quite common. Unless mediated by
better error awareness and robust recovery mechanisms, these
errors propagate to subsequent stages of processing in a dialog
system and exert a considerable negative impact on the quality
and ultimately the success of the interaction [11,13].

Left unchecked, speech recognition errors can lead to two
types of problems in a spoken dialog system: non-under-
standings, and misunderstandings. In a non-understanding, the
system fails to obtain any semantic interpretation of the user’s
input. For instance, if the parsing stage lacks a certain degree of
robustness, even the smallest speech recognition error can
compromise the entire language understanding process. In
contrast, in a misunderstanding the system does construct a
semantic interpretation of the user’s turn, but this interpretation
is incorrect. In the absence of accurate mechanisms for detecting
such errors, systems will take misunderstandings as fact and act
based on invalid information.

We argue that, as a prerequisite for increasing robustness
and making better decisions, spoken dialog systems must be able
to accurately assess the reliability of the information they use.
The work we present in this paper aims to endow these systems

with the ability to construct more accurate beliefs by
integrating information across multiple turns in the dialog.
Typically, spoken dialog systems rely on recognition confidence
scores to guard against potential misunderstandings. While
confidence scores can provide an initial assessment for the
reliability of the information obtained from the user, ideally a
system should leverage information available in subsequent user
responses in order to update and improve the accuracy of its
beliefs. Take for instance example 3 in Figure 1. Here, the
system uses the recognition confidence score to form an initial
belief about the start_time concept: the system believes that the
start time is 3 p.m. with probability 0.65. Next, the system
performs an implicit confirmation followed by a request for the
date concept. The next recognition result is ” CAN YOU
DETAI LS TI ME” , which amounts to a non-understanding. In
light of this interaction (as well as the initial confidence score)
what should the system now believe about the start_time concept?

In this paper, we present a data-driven solution to this belief
updating problem. We start by discussing related work in

Section 2, and we argue that the heuristic approaches currently
used for this purpose are suboptimal. Next, in Section 3 we
precisely define and formalize the belief updating problem, and
we introduce a reduced (yet useful in practice) version of the
problem which we will address in the rest of the paper. In
Section 4 we describe the data that we collected and used in this
work, and in Section 5 we present an analysis of user responses
to system confirmation actions. In Section 6 we present a simple
machine learning approach for the belief updating problem.
Experimental results indicate that the proposed approach
constructs significantly more accurate beliefs than the heuristic
rules currently used in most spoken dialog systems. Finally, in
Section 7 we conclude and discuss future plans.

2. RELATED WORK

We have already noted confidence annotation as an important
starting point towards continuous belief assessment in spoken
dialog systems. Traditionally, confidence annotation schemes
were focused on detecting word-level errors [1,4] and operated
exclusively with information from the decoder (e.g. acoustic and
language model and lattice information). More recently, various
machine learning approaches have been proposed for detecting
semantic errors (e.g. misunderstandings) and building semantic
confidence scores [3,10] that are more appropriate for use in
spoken dialog systems. These approaches use labeled in-domain
data and typically integrate information from various sources of
knowledge in the spoken dialog system. Generally, these
techniques can be used to construct fairly accurate, but not
perfect semantic confidence annotators.

Spoken dialog systems use the confidence score to form an
initial assessment of the reliability of the concepts acquired from
an input. Based on this score, a system can decide to accept the
input, reject it, or engage in a confirmation strategy. Two
confirmation strategies are widely used: explicit confirmation
and implicit confirmation (see Figure 1). The tradeoff between
these strategies is fairly well understood: explicit confirmations
take an extra dialog turn; user responses to these confirmations
are generally predictable and easy to handle. In contrast, implicit
confirmations are more efficient if the value confirmed is indeed
correct – no dialog turn is lost. However, an implicit
confirmation with an incorrect value can increase confusion and
create a greater cognitive load for the user [14]. This in turn can
lead to a wider spectrum of possible user responses that can be
more difficult to anticipate and therefore recognize correctly.
Given these tradeoffs, most systems use implicit confirmations
when they are fairly confident that the information to be verified
is indeed correct and explicit confirmations when the confidence
is lower. Additionally a system might decide to consider a
concept grounded without taking any further action if the
confidence score is very high, or reject the value altogether if the
confidence score is very low.

Typically, very simple heuristic rules are used to update
beliefs in light of user responses to various confirmation actions.
For instance, after explicit confirmations, most systems consider
the value grounded if they hear a yes-type answer (e.g. yes,
correct, that’s right) or erase the hypothesis if they hear a no-
type answer (e.g. no, that’s wrong). Additionally, if the user
provides a new value for the concept, this will overwrite the old
value. In the case of implicit confirmations, most systems rely on
the user to overwrite the concept if the confirmed value is in-

correct. We believe these heuristic approaches are suboptimal for
a number of reasons. As example 3 in Figure 1 illustrates, users
don’ t always overwrite slots. Previous studies have revealed that
user responses following implicit confirmations cover a wide
language spectrum [6], and simple heuristic rules will fall short
on that account. Furthermore, user responses to confirmation
actions are also subject to speech recognition errors, which
renders the problem even more difficult for simple rule-based
approaches (see for instance turn 4 from example 1 and example
3 in Figure 1). Finally, these heuristic rules lead to rather
polarized beliefs (e.g. trust that value / don’ t trust that value),
which do not accurately capture the degree of uncertainty the
system should have. In light of the shallow solutions currently
used for belief updating, results such as “users discovering errors
through implicit confirmations are less likely to get back on
track” [12] are not so surprising. The problem might not lie with
the implicit confirmations per se, but rather with an inability to
handle user responses and to accurately update beliefs.

Apart from confidence annotation, another vein of research
that is relevant for this problem is correction detection [5,6].
Here, the task is to detect whether or not the user is currently
attempting to correct a previous system misunderstanding.
Machine learning techniques similar to the ones used for
detecting misunderstandings are also used for detecting
corrections. The resulting correction detectors are fairly accurate,
but not perfect. Some similarities with the work we report in this
paper can be found in previous work by Krahmer and Swerts [6].
In an effort to better understand the spectrum of user responses
to system confirmation actions, Krahmer and Swerts analyzed
positive and negative cues to implicit and explicit confirmations
in a corpus of dialogs collected from a Dutch train-table system
(we have repeated their analysis on data collected in a room-
reservation system and we report the results in Section 5).
Furthermore, Krahmer and Swerts showed that a memory-based
learning approach can predict with a fairly high accuracy
whether or not the previous confirmation contained an error.
However, as the authors pointed out, their results were obtained
on a small dataset, and using transcript information (as opposed
to actual recognition results) as well as hand-annotated features,
some of which are not available at run-time. Furthermore,
Krahmer and Swerts were interested in detecting errors (a binary
task), while we are interested in constructing accurate concept-
level beliefs, which explicitly represent the degree of uncertainty
the system has.

While both semantic confidence annotation and correction
detection schemes are clearly valuable tools for belief updating,
taken in isolation they do not provide a solution to this problem.
We believe the solution lies in integrating confidence annotation
and correction detection into a unified framework that would
allow spoken dialog systems to continuously track their beliefs.

The idea of explicitly representing uncertainty and updating
beliefs through time also appears in previous work by Paek and
Horvitz [8]. In the DeepListener project, the authors used a
Dynamic Bayesian Network to continuously update the belief
over a user’s goal in a simple command-and-control application.
In contrast, in our work we are interested in updating beliefs
over concept values in the context of a more complex task-
oriented spoken dialog system. Furthermore, if in their work the
network structure and parameters were handcrafted by domain
experts, in our approach the model parameters are learned from
data.

3. THE BELIEF UPDATING PROBLEM

We will now formalize the belief updating problem. Let us start
by defining a few terms. Let C denote a concept that the system
acquires from the user (e.g. date, start_time, end_time). By
Belieft(C), or system belief over a concept C, we denote a
representation of the system’s uncertainty in the value of concept
C at a certain time t. Let SA(C) denote the system action at time
t, with respect to concept C. For instance, in turn 3, example 2,
Figure 1 the system implicitly confirms the date and requests the
start time. Therefore, with respect to the date concept, the system
action can be described as:

SA(date) = ImplicitConfirm(date) + Request(Other)

With respect to the start_time concept, we have:

SA(start_time) = ImplicitConfirm(Other) + Request(start_time)

Furthermore, let R denote the user response to the system action,
as this response is perceived by the system. Then, the belief
updating problem can be stated as follows:

given an initial belief over a concept Belieft(C), a system
action SA(C) and a user response R, compute the
updated belief Belieft+1(C).

The belief over a concept is most accurately represented via
a full probability distribution over all the possible concept
values. However, this full-blown representation can be difficult
to handle. From a practical perspective, it is very improbable that
a spoken dialog system will “hear” throughout an interaction
more than 3 or 4 conflicting values for a concept. For instance,
in the corpus we collected (see Section 3), the maximum number
of conflicting hypotheses accumulated through interaction for a
concept was 3. Moreover, the system heard more than 1
hypothesis per concept in only 6.9% of cases. We believe that,
even if a system used information from multiple recognition
hypotheses (our system, like most other systems, did not), the
number of different hypotheses that could be accumulated
through interaction would rarely exceed 3 or 4.

Under these circumstances, a compressed representation of
belief has the potential of greatly simplifying the problem
without causing a corresponding decrement in performance. In
this paper we report on the development of a belief updating
scheme in which the belief over a concept is represented by the
confidence score of the current top hypothesis for that concept.
Moreover, we focus our attention only on updating beliefs in
light of implicit or explicit confirmations (in the more general
case the system could update its beliefs continuously, in all
concepts, at all points in time). The reduced version of the belief
updating problem that we use can therefore be stated as follows:

given an initial confidence score for the top hypothesis h
for a concept C, construct an updated confidence score
for the hypothesis h, in light of the system confirmation
action SA(C), and the follow-up user response R.

4. DATA

The work presented in this paper relies on data collected in an
experiment [2] with RoomLine [9], a mixed-initiative spoken
dialog system that assists users in making conference room
reservations. The system finds the list of available rooms that
satisfy an initial set of user-specified constraints (e.g. date and
time, location, size, equipment, etc). The system then engages in

a follow-up negotiation dialog to present this information to the
user and identify which room best matches the user’s needs.
Sample interactions with the system are available online [9].
During the experiment 46 participants (first-time users)
interacted with the system; each participant attempted a
maximum of 10 scenario-based interactions. The scenarios had
different degrees of difficulty and covered all aspects of the
system’s functionality. The collected corpus contains 449
dialogs and 8278 user turns.

The user speech was orthographically transcribed. Based on
the transcriptions, we manually labeled the correct value for each
concept (as specified by the user) at each turn, as well as whether
or not the user was trying to perform a correction on each of the
concepts present in the previous system turn.

To guard against potential misunderstandings, the system
used both explicit and implicit confirmations. The strategies
were engaged following a commonly used confidence threshold
model (see Section 2). After the confirmation actions, the system
used a set of simple heuristic rules to update the confidence
score of the confirmed hypothesis. For explicit confirmations the
system boosted the confidence score to 0.95 when the perceived
user response contained a positive marker (e.g. yes, right) and
deleted the hypothesis if the response included a negative marker
(e.g. no, wrong) For implicit confirmations, the system would
discredit the hypothesis if it heard a negative marker in the user
response and the implicit confirmation was not followed by a
yes/no question; if the user response included a new value for
the confirmed concept, the system overwrote the old value
(hence deleted the initial hypothesis); finally, for all other
responses the system increased the score of the initial hypothesis
to 0.95. Note that sometimes multiple confirmation actions were
executed in a single turn (e.g. an implicit confirmation followed
by an explicit confirmation on a different concept).

Apart from the explicit and implicit confirmations which
where engaged by the error handling module, there were a
number of other system turns that included information previou-
sly acquired from the user. For instance, the system might
respond: ”I found 10 rooms this Friday between 2 and 4 p.m. Would
you like a small room or a large one?” While the main purpose of
this turn is to provide information to the user, the turn also acts
as an implicit confirmation for the date, start_time and end_time
concepts. In the sequel, we will refer to these as unplanned
implicit confirmations. The system did not intend them as error
handling actions; rather the implicit confirmations appeared as a
side-effect of the design of system prompts. Moreover, the
system did not update its belief over the confirmed concepts in
this case. For these reasons, we analyzed these unplanned
implicit confirmations separately from the planned ones.

5. USER RESPONSE ANALYSIS

To gain a better understanding of the confirmation strategies and
the challenges that we are facing with respect to belief updating,
we performed an analysis of user responses to these strategies.

Following Krahmer and Swerts [6], we divided user
responses into three response-types according to whether they
contain positive markers – yes (e.g. yes, correct, right), negative
markers – no (e.g. no, wrong), or no positive or negative
markers – other. The classification was performed twice: once
using the transcripts, and once using the output from the
recognition system. We then cross-tabulated these classes against

whether the system was confirming a correct or an incorrect
concept value. The results are presented in Table 1.A-F.

As Table 1.A shows, user responses following explicit
confirmations included positive markers in 94% of the cases
when the valued confirmed was indeed correct. In contrast, the
answers included a negative marker in only 72% of the explicit
confirmations with incorrect values. This discrepancy is
consistent with prior observations made by Krahmer and Swerts
(presented in brackets in the Table 1.A). It indicates that in a
significant number of cases (27%) users attempted to correct the
system by other means than a negative answer to the explicit
confirmation question. A closer look at these instances reveals
that in most of these cases (~70%) users repeated the correct
value for the concept. Other times, users ignored the system’s
explicit confirmation and tried to change the focus of the
conversation. Prompted by this observation, we cross-tabulated
users’ correction attempts versus the correctness of the value the
system tried to verify. The results are shown in Table 2.A. We
noted that 10% of the incorrect explicit confirmations (29 of the
29+250=279 cases) were not corrected by the users – these are
mostly the cases in which users were trying to shift the focus of
the conversation. Finally there were a small number of other-
type responses on explicit confirmations which stemmed from
audio end-pointing errors and turn-overtaking issues.

A comparison between Tables 1.A and 1.B reveals an
increased proportion of the other-type responses in the decoded
results. This difference is explained by misrecognitions of YES /
NO into acoustically similar words (e.g. THIS / SMALL). The
difference is also present for both planned and unplanned
implicit confirmations, and highlights again the fact that the
presence of recognition errors increases the difficulties of
detecting corrections and building accurate beliefs.

For implicit confirmations, there are much fewer yes- and
no-type responses, and the other-type responses dominate (see
Figure 1.C). For correct implicit confirmations this large number
is expected – users mostly answer the follow-up system question.

The large number of other-type responses on incorrect implicit
confirmations is explained by the fact that oftentimes users do
not attempt to correct the incorrect concept values implicitly
confirmed by the system. Table 2.B. shows that for 51.5% (118 /
118+111=229) of incorrect implicit confirmations users are not
attempting to correct the system.

A closer analysis of these instances led to several
observations. First, although in these 118 cases users did not
immediately correct the system’s incorrect implicit confirmation,
in 49 of these cases (~40%) users did attempt to correct the error
in a later turn. More interestingly, the analysis revealed that
users interact with the system strategically: they correct the
errors which have to be recovered for the successful completion
of the task (we shall refer to these as critical errors), and mostly
ignore the others. Given the nature of the domain, certain
scenarios could be completed by users in different ways. This in
turn rendered some concepts more important for task success
than others. For instance, if the system accidentally mis-
recognized that the user wanted a room with a whiteboard, this
incorrectly filled concept (equipment) had no impact on task
success if the goal was only to make a reservation for a room on
Friday morning from 10 to 11. A user could ignore this system
error altogether and still complete the task successfully. Out of
the 49 later-turn corrections, 47 were on critical errors, and only
2 on non-critical errors. At the same time, there were only 14
critical errors that were never corrected, and hence had a direct
contribution to task failure. These results confirm that users
adapt their behaviors to their specific goals, and engage in
corrections only when it is necessary to do so.

Finally, for unplanned implicit confirmations, the distribu-
tion of response types is similar to the one for the planned
implicit confirmations, and the same phenomenon of users not
always correcting the system can be observed.

6. EXPERIMENTS AND RESULTS

6.1. Approach

The reduced form of the belief updating problem we address can
be stated as follows: given an initial confidence score for a
concept value to be confirmed, a system confirmation action, and
the user response to that system action (as it was perceived by
the system), compute an updated and more accurate confidence
score for the value undergoing the confirmation. We used a
machine learning approach.

While detection of misunderstandings and corrections can
be regarded as a binary classification task, our goal is to generate
good probability estimates (a continuous value between 0 and 1
which represents the system’s uncertainty). The “goodness” of

A. Explicit Confirmation (from transcripts)
 Yes No Other
Correct (1159) 94% [93 %] 0% [0%] 5% [7%]
Incorrect (279) 1% [6%] 72% [57%] 27% [37%]

Table 1. Cross-tabulation of response-type against correct and incorrect system confirmation actions. Percentage numbers reflect
proportions from the correct and respectively incorrect confirmations. Bracketed numbers were reported by Krahmer and Swerts in a

similar study of a Dutch train-timetable information system [6].

B. Explicit Confirmation (from decoded results)
 Yes No Other
Correct (1159) 87% 1% 12%
Incorrect (279) 1% 61% 38%

C. Implicit Confirmation (from transcripts)
 Yes No Other
Correct (554) 30% [0%] 7% [0%] 63% [100%]
Incorrect (229) 6% [0%] 33% [15%] 61% [85%]

D. Implicit Confirmation (from decoded results)
 Yes No Other
Correct (554) 28% 5% 67%
Incorrect (229) 7% 27% 66%

E. Unplanned Implicit Conf. (transcripts)
 Yes No Other
Correct (2725) 25% 19% 56%
Incorrect (457) 12% 28% 60%

F. Unplanned Implicit Conf. (decoded)
 Yes No Other
Correct (2725) 24% 17% 59%
Incorrect (457) 10% 21% 69%

A. Explicit Confirmation
 User

corrects
User does
not correct

Correct 0 1159
Incorrect 250 29

B. Implicit Confirmation
 User

corrects
User does
not correct

Correct 2 552
Incorrect 111 118

C. Unplanned Implicit Confirmation
 User

correct
User does
not correct

Correct 11 2714
Incorrect 138 319

Table 2. Users’ correction attempts versus correctness of
confirmed values.

these probability estimates can be evaluated by computing the
cross-entropy between the true distribution of the target values
and the distribution predicted by the learned model (the smaller
the cross-entropy, the better). When the target is binary, cross-
entropy equals the negative average log-posterior of the correct
class. This metric is commonly referred to as soft-error.
Discriminant classification techniques traditionally used for
detecting misunderstandings and corrections (e.g. decision trees,
memory-based learning, etc.) are inappropriate in this case since
they focus on minimizing hard- rather than soft-error.

A machine learning technique with good soft-metric
performance is binary logistic regression. This method assumes a
certain density model and learns parameters such as to maximize
the average log-posterior of the correct class. Furthermore, this
technique is sample efficient, and, when used in a stepwise
approach, can also perform feature selection. We therefore
decided to use a collection of stepwise logistic regression
models. For each system action (explicit confirmation, implicit
confirmation and unplanned implicit confirmation), we parti-
tioned the data according to the response-type of the recognition
result (e.g. yes, no, other) and then trained a separate stepwise
logistic regression model for each partition. The rationale for
training separate models was that features are likely to work
differently for each response-type. The proposed approach is
equivalent with constructing a one-level logistic model tree
(LMT) [7] for each system action, with the root node splitting on
the response-type.

6.2. Dataset: features and labels

Our dataset contained 5403 data-points (1438 for explicit
confirmation, 783 for implicit confirmation and 3182 for
unplanned implicit confirmation). Each data-point describes a
concept update: it specifies the concept and value undergoing
the update, the initial system belief about that concept, the
system confirmation action with respect to that concept, and a
label which indicates if the value undergoing the confirmation
was indeed correct or not (this was our target for learning).

We identified a large number of features from different
levels in the system, which could be relevant for the task at hand.
All these features are available to the system at run-time. Given
the space constraints, we only summarize the feature set below1.

• Initial situation features: initial confidence score of the top
hypothesis, the identity of the concept undergoing the
update, current dialog state, turn number;

• System action features: features describing other system
actions taken in conjunction with the current confirmation;

• Acoustic and prosodic features of the user response:
duration, pitch (mean, min, max, range, min and max slope,
plus normalized versions), speech rate, initial pause, etc.;

• Lexical features of the user response: number of words, the
presence / absence of lexical terms highly correlated with
corrections; the terms were apriori identified by computing
mutual information between these terms and corrections;

• Grammatical features of the user response: number of
grammar slots contained in the parse, the number of new
slots, repeated slots, goodness of parse scores, etc.;

• Dialog level features of the user response: features
describing how well the response matched the current system

1 For the complete feature set, see: www.cs.cmu.edu/~dbohus/blf_upd/

expectation, whether the response contained a new value for
the concept, etc.

6.3. Results

We trained the logistic model trees and evaluated them using 10-
fold cross validation. We compared the cross-validation results
(both hard- and soft-error) against three baselines. The results
are shown in Figure 1. The initial baseline reflects the accuracy
of the initial system belief, before any update is performed. The
heuristic baseline reflects the performance attained by the heuris-
tic update rule currently used by the system (see Section 4).
Finally, we also report an oracle baseline. The user-response
analysis from Section 5 revealed that users do not always correct
system errors. As a result, even if we knew precisely when the
user is correcting the system, we would not be able to construct
absolutely perfect beliefs. If for instance we assumed that the
concept is incorrect each time the user makes a correction we
would still make a certain number of errors. The oracle baseline
reflects the performance we would attain if we knew precisely
when the user is correcting the system.

As Figure 2 shows, the logistic model tree (LMT) produces
significant improvements over the heuristic rule on both hard-
and soft-error. For explicit confirmations, the simple heuristic
rule used by the system bridges a large portion of the gap
between the no-update and the oracle baseline: from 31.15% to
8.41%. However, the logistic model tree performs even better,
further reducing the hard-error rate from 8.41% to 3.57%
(p=0.029), very close to the oracle performance of 2.71%. An
even larger improvement is attained for updates after implicit
confirmations. As expected, the heuristic rule faces more

Figure 2. Performance comparison between logistic model
tree (LMT) and several baselines (both hard and soft-error)

0

10

20

30

H
ar

d
-e

rr
or

 (%
)

0

0.2

0.4

0.6

0.8

1

S
o
ft

-e
rr

or

Initial
Heuristic
LMT

Initial
Heuristic
LMT
Oracle

30.40

23.37

16.15
15.33

0.61
0.67

0.43

Implicit Confirmation

0

10

20

H
ar

d
-e

rr
o

r
(%

)

0

0.2

0.4

0.6

S
of

t-
er

ro
r

Initial
Heuristic
LMT

Initial
Heuristic
LMT
Oracle15.40

14.36
12.64

10.37

Unplanned Implicit Confirmation

0.43
0.46

0.34

0

10

20

30

H
ar

d
-e

rr
or

 (
%

)

0

0.2

0.4

0.6

S
o
ft
-e

rr
or

Initial
Heuristic
LMT
Oracle

Initial
Heuristic
LMT

31.15

8.41

3.57 2.71

0.51

0.19

0.12

Explicit Confirmation

difficulties in this situation, and reduces the hard-error rate only
from 30.4% to 23.37%. The logistic model tree again bridges the
remaining gap from 23.37% to 16.15% (p=0.0094), yielding
results very close to the oracle baseline (15.33%). For unplanned
implicit confirmations, the belief updating problem is even more
difficult. Usually in this case multiple concepts are confirmed in
a single turn, and even if our features capture the fact that the
user attempts to correct, it is often difficult to infer which
concept is being corrected. The heuristic rule provides almost no
improvement in performance over the initial baseline (the minor
improvement comes from instances where the user is repeating
the correct value and thus overwriting the concept). The learning
approach produces a better result, although this time it bridges
only half of the gap between the initial and oracle baselines,
reducing the hard error from 15.4% to 12.64% (p=0.07).

The discussion above has focused on hard-error. However,
as we argued in subsection 6.1 we are really interested in good
soft-error performance. Indeed, the proposed learning approach
brings statistically significant improvements on the soft metric
for each of the three confirmation types (see plots on the right-
hand side in Figure 2). It is interesting to notice that in the case
of implicit confirmations (both planned and unplanned) the
heuristic rule does not bring any gains; this happens largely due
to the fact that the heuristically-updated beliefs are highly
polarized (probabilities close to 0 or 1), and do not accurately
reflect the uncertainty the system has.

Some of the most informative features for belief updating
were: the initial confidence score, various prosodical features,
expectation match, barge-in, various lexical features, the
presence of repeated grammar slots, as well as the identity of the
concept to be confirmed (concept-id). In fact, adding the
concept-id led to significant gains in accuracy for belief updating
following implicit confirmations. We believe this is related to
our observations from Section 5. Since some of the concepts
(e.g. date, start_time, end_time) are on average more important
than others for the task at hand, adding knowledge into the belief
updating process about the identity of the concept undergoing
the confirmation helps the system better take into account the
user responses to the implicit confirmation.

7. CONCLUSION

We have proposed a machine learning based approach for
constructing more accurate beliefs in spoken dialog systems by
integrating information over multiple turns in the conversation.
In particular, we are interested in updating system beliefs in light
of user responses to explicit and implicit confirmations. We have
addressed a simplified yet practically very useful form of the
belief updating problem, whereby the system belief is reduced to
the confidence score of the top hypothesis. We have shown that
a logistic model tree using features from different levels in the
system can be trained to construct beliefs that are significantly
more accurate than those produced by simple heuristic rules
typically found in current systems. Our work has brought
together previous insights from semantic confidence annotation
and correction detection into a unified framework that allows
spoken dialog systems to more accurately track their beliefs and
avoid misunderstandings.

In the process, our data analysis has corroborated prior
studies that have shown that user responses to explicit and
implicit confirmations cover a wide language spectrum. Further-

more, we have found that oftentimes users do not correct implicit
confirmation actions containing incorrect values, unless recovery
is essential for the task at hand. Rather, users consider the over-
all properties of the task and adjust their strategies accordingly.

In light of the results we obtained on the reduced version of
the belief updating problem, we are currently extending this
work in several directions. First, we plan to use a more
comprehensive, but still compact belief representation: n
hypotheses plus “other” , where n is a small number like 2 or 3
(the reduced version of the problem we addressed in this paper
had n=1). Secondly, we plan to extract and use information from
multiple hypotheses from the recognition engine. Finally, since
users can attempt corrections at any point in the dialog, we plan
to investigate the possibility of continuously updating beliefs,
after all system actions (i.e. not only after confirmation actions).

8. REFERENCES

[1] D. Bansal, and M.K. Ravishankar, “ New Features for
Confidence Annotation” , in Proceedings of ICSLP-98

[2] D. Bohus, and A. Rudnicky, “ Sorry, I didn’ t Catch That:
An Analysis of Non-understandings and Recovery Strategies” ,
Proceedings of SIGdial-06, Lisbon, Portugal, 2006.

[3] P. Carpenter, C. Jin, D. Wilson, R. Zhang, D. Bohus and A.
Rudnicky, “ Is This Conversation on Track?” in Proceedings of
Eurospeech-2001.

[4] S. Cox, and R. Rose, “ Confidence Measures for the
Switchboard Database” , in Proceedings of ICASSP-96

[5] J. Hirschberg, D. Litman, M. Swerts, “ Identifying User
Corrections Automatically in Spoken Dialogue Systems” , in
Proceedings of NAACL’01, Pittsburgh, PA, June 2001

[6] E. Krahmer, M. Swerts, M. Theune, and M. Weegels,
“ Error Detection in Spoken Human Machine Interaction” , in
International Journal of Speech Technology, Vol.4, No.1, 19-29.

[7] N. Landwehr, H. Mark, and F. Eibe, “ Logistic Model
Trees” , in Proceedings of ECML 2003, Croatia, 2003.

[8] T. Paek, and E. Horvitz, “ DeepListener: Harnessing
expected utility to guide clarification dialog in spoken language
systems” , in Proceedings of ICSLP’2000, Beijing, China, 2000.

[9] RoomLine: www.cs.cmu.edu/~dbohus/RoomLine

[10] R. San-Segundo, B. Pellom, and W. Ward, “ Confidence
Measures for Dialogue Management in the CU Communicator
System” , in Proceedings of ICASSP-2000.

[11] G. Sanders, and J. Garofolo, “ Effects of Word Error Rate in
the DARPA Communicator Data During 2000 and 2001” , in
Proceedings of ICSLP-2002, Denver, CO, USA, 2002.

[12] J. Shin, and S. Narayanan, “ Analysis of User Behavior
under Error Conditions in Spoken Dialogs” , in Proceedings of
ICSLP-2002, Denver, CO, USA, 2002.

[13] M. Walker, D. Litman, C. Kamm, and A. Abella,
“ Evaluating Spoken Dialogue Systems with PARADISE: Two
Case Studies” , in Computer Speech and Language, 12-3.

[14] M. Weegels, “ User’s Conceptions of Voice-Operated
Information Services” , in International Journal of Speech
Technology, 3(2):75-82.

