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Abstract 
We present an investigation of open-world dialog, centering 
on building and studying systems that can engage in conver-
sation in an open-world context, where multiple people with 
different needs, goals, and long-term plans may enter, inte-
ract, and leave an environment. We outline and discuss a set 
of challenges and core competencies required for supporting 
the kind of fluid multiparty interaction that people expect 
when conversing and collaborating with other people.  
Then, we focus as a concrete example on the challenges 
faced by receptionists who field requests at the entries to 
corporate buildings. We review the subtleties and difficul-
ties of creating an automated receptionist that can work with 
people on solving their needs with the ease and etiquette ex-
pected from a human receptionist, and we discuss details of 
the construction and operation of a working prototype. 

1. Introduction 
Most spoken dialog research to date can be characterized 
as the study and support of interactions between a single 
human and a computing system within a constrained, pre-
defined communication context. Efforts in this space have 
led to the development and wide-scale deployment of te-
lephony based, and more recently multimodal mobile ap-
plications. At the same time, numerous and important chal-
lenges in the realm of situated and open-world communica-
tion remain to be addressed.  

In this paper, we review challenges of dialog in open-
world contexts, where multiple people with different and 
varying intentions enter and leave, and communicate and 
coordinate with each other and with interactive systems.  
We highlight the opportunity to develop principles and 
methods for addressing these challenges and for enabling 
systems capable of supporting natural and fluid interaction 
with multiple parties in open worlds—behaviors and com-
petencies that people simply assume as given in human-
human interaction. We begin by reviewing the core chal-
lenges of moving from closed-world to open-world dialog 
systems, and outline a set of competencies required for en-
gaging in natural language interaction in open, dynamic, 
relatively unconstrained environments. We ground this 
discussion with the review of a real-world trace of human-
human interaction.  Then, we present details of a prototype 

open-world conversational system that harnesses multiple 
component technologies, including speech recognition, 
machine vision, conversational scene analysis, and prob-
abilistic models of human behaviour.  The system can en-
gage in interaction with one or more participants in a natu-
ral manner to perform tasks that are typically handled by 
receptionists at the front desk of buildings. We describe the 
set of models and inferences used in the current system and 
we highlight, via review of a sample interaction, how these 
components are brought together to create fluid, mixed-
initiative, multiparty dialogs.  

2.  Open-World Dialog 
To illustrate several challenges faced by open-world dialog 
systems, we shall first explore real-world human-human 
interactions between a front-desk receptionist and several 
people who have arrived in need of assistance. We focus 
on a representative interaction that was collected as part of 
an observational study at one of the reception desks at our 
organization. The interacting parties and physical configu-
ration are displayed in the video frame in Figure 1. 

At the beginning of the segment, the receptionist is on 
the phone, handling a request about scheduling a confer-
ence room, viewing availabilities of rooms and times on 
her computer in support of the request. Participant 1 (P1) is 
an external visitor who the receptionist has just finished 
speaking with; he is currently filling in a visitor registra-
tion form. As P1 is completing the form, the receptionist 
answers the telephone and engages in a phone conversation 
with participant 4 (P4).  During this time, participant 2 (P2) 
enters the lobby from inside the building, approaches the 
reception desk, and makes eye contact with the reception-
ist. The receptionist, knowing that P1 needs additional time 
to complete the registration form, and that the conversation 
can continue with P4 while she engages in a fast-paced in-
teraction with P2, moves to engage with P2. Apparently re-
lying on inferences from the observation that P2 came from 
inside the building, the receptionist guesses that P2 most 
likely needs a shuttle to another building on the corporate 
campus. She lifts her gaze towards P2 and asks P2 softly 
(while moving her mouth away from the phone micro-
phone), “Shuttle?” P2 responds with a building number. 



While the receptionist continues on the phone with P4 on 
options for arranging a meeting room in the building, she 
interacts with a shuttle ordering application on the com-
puter. Soon, participant 3 (P3) approaches the reception 
desk. At this time, P2 re-establishes eye contact with the 
receptionist and indicates with a quick hand gesture and a 
whisper that the shuttle is for two people. The receptionist 
now infers that P2 and P3—who have not yet displayed ob-
vious signs of their intention to travel together—are actu-
ally together. The receptionist whispers the shuttle identifi-
cation number to P2 and continues her conversation with 
P4, without ever directly addressing P3. Later, once P1 
completes the form, the receptionist re-engages him in 
conversation to finalize his badge and contact his host 
within the building.   

The interaction described above highlights two aspects 
of open-world dialog that capture key departures from the 
assumptions typically made in traditional dialog systems. 
The first one is the dynamic, multiparty nature of the inter-
action, i.e., the world typically contains not just one, but 
multiple agents who are relevant to a computational sys-
tem, each with their own goals and needs. The second de-
parture from traditional dialog systems is that the interac-
tion is situated, i.e., that the surrounding physical environ-
ment, including the trajectories and configuration of peo-
ple, provides rich, relevant, streaming context for the inter-
action. Our long-term goal is to construct computational 
models that can provide the core skills needed for handling 
such situated interaction in dynamic multiparty settings, 
and work with people with the etiquette, fluidity and social 
awareness expected in human-human interactions.   

In the following two subsections, we discuss the multi-
party and situated aspects of open-world interaction in 
more detail, and we identify the challenges and opportuni-
ties that they frame. In Section 3, we review these chal-
lenges and outline a set of core competencies required for 
open-world dialog. Then, in Sections 4 and 5, we describe 
a prototype situated conversational agent that implements 
multiple components of an open-world dialog and review 
their operation in the receptionist setting. 

2.1.  Multiparty Aspect of Open-World Dialog 
The assumption in spoken dialog research to date that only 
one user interacts with the system is natural for telephony-
based spoken dialog systems and is reasonable for a large 
class of multimodal interfaces. In contrast, if we are inter-
ested in developing systems that can embed their input and 
interaction into the natural flow of daily tasks and activi-
ties, the one-user assumption can no longer be maintained.         
     The open world typically contains more than one rele-
vant agent. Each agent may have distinct actions, goals, in-
tentions, and needs, and these may vary in time. Further-
more, the open world is dynamic and asynchronous, i.e., 
agents may enter or leave the observable world at any point 
in time, and relevant events can happen asynchronously 
with respect to current interactions.     
     The flow of considerations from single-user, closed-
world systems to increasingly open worlds is highlighted 
graphically in Figure 2.  Systems providing service in the 
open world will often have to have competencies for work-
ing with multiple people, some of whom may in turn be 
coordinating with others within and outside an agent’s 
frame of reference. Such a competency requires the abili-
ties to sense and track people over time, and to reason 
jointly about their goals, needs, and attention.  We can 
categorize interactive systems based on the assumptions 
they make regarding the number and dynamics of relevant 
agents and parties involved in the interaction as follows: 

• Single-user interactive systems engage in interaction 
with only one user at a time. Traditional telephony 
spoken dialog systems, as well as most multimodal 
interfaces such as multimodal mobile systems, e.g. 
[1, 26], multi-modal kiosks e.g. [9, 13], or embodied 
conversational agents e.g. [5] fall into this category.  

• Fixed multi-participant interactive systems can inter-
act with one or more participants at a given time. The 
number of participants in a given interaction is 
known in advance.  

• Open multi-participant interactive systems can inter-
act with one or more participants. Participants may 
leave or join an interaction at any given time.  

• Open multiparty interactive systems further extend 
the class of open multi-participant systems in that 
they can engage in, pursue, and interleave multiple 
parallel interactions with several different parties. 
The receptionist interaction discussed earlier falls 
into this last category, as does the prototype system 
we shall discuss later, in Sections 4 and 5.     

The pursuit of multi-participant and multiparty interac-
tive systems brings to fore several research challenges. 
First, the multi-participant aspect adds a new dimension to 
several core dialog system problems like dialog manage-
ment, turn taking, and language understanding. Current so-
lutions for these problems typically rely on the single-user 
assumption and do not generalize easily to the multi-
participant case. We also face entirely new types of prob-

 

1 2 3 

Figure 1. Video frame from a multiparty interaction. 
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Figure 2. Conversational dynamics in: (a) single-user sys-
tem; (b) a fixed multi-participant system; (c) an open multi-

participant system, (d) an open multiparty system 
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lems, such as identifying the source and the target for each 
communicative signal in a multi-participant interaction, or 
handling engagement and disengagement in dynamic 
multi-participant settings. Moving from multi-participant 
to multiparty systems raises additional problems with re-
spect to maintaining multiple interaction contexts, and tri-
aging attention between multiple goals, parties and conver-
sations. We shall discuss these new challenges in more de-
tail in Section 3. Before that, we turn our attention to a 
second central feature of open-world dialog: the situated 
nature of the interaction. 

2.2. Situated Aspect of Open-World Dialog 
Dialog systems developed to date operate within narrow, 
predefined communication contexts. For example, in te-
lephony-based spoken dialog systems, the audio-only 
channel limits the available context to the information that 
can be gained through dialog. In some cases, a stored user 
profile might provide additional information. Multimodal 
mobile systems might also leverage additional context 
from simple sensors like a GPS locator.  

In contrast, systems designed to be effective in the open 
world will often need to make inferences about multiple 
aspects of the context of interactions by considering rich 
streams of evidence available in the surrounding environ-
ment. Such evidence can be observed by standing sensors 
or actively collected to resolve critical uncertainties.  Peo-
ple are physical, dynamic entities in the world, and the sys-
tem must reason about them as such, and about the conver-
sational scene as a whole, in order to successfully and 

naturally manage the interactions. Concepts like presence, 
identity, location, proximity, trajectory, attention, and in-
ter-agent relationships all play fundamental roles in shap-
ing natural, fluid interactions, and need to become first-
order objects in a theory of open-world dialog.  

Like the multiparty aspect of open-world dialog, the 
situated nature of the interaction raises a number of new 
research challenges and brings novel dimensions to exist-
ing problems. One challenge is creating a basic set of 
physical and situational awareness skills. Interacting suc-
cessfully in open environments requires that information 
from multiple sensors is fused to detect, identify, track and 
characterize the relevant agents in the scene, as well as the 
relationships between these agents. At a higher level, mod-
els for inferring and tracking the activities, goals, and long-
term plans of these agents can provide additional context 
for reasoning within and beyond the confines of a given in-
teraction, and optimizing assistance to multiple parties. Fi-
nally, new challenges arise in terms of integrating this 
streaming context in various interaction processes, like the 
engagement or disengagement process, turn taking, inten-
tion recognition, and multiparty dialog management. 

3.  Core Competencies for Open-World Dialog 
We anchor our discussion of challenges for open-world 
dialog in Clark’s model of language interaction [7]. With 
this model, natural language interaction is viewed as a joint 
activity in which participants in a conversation attend to 
each other and coordinate their actions on several different 
levels to establish and maintain mutual ground. Compo-
nents of Clark’s perspective are displayed in Figure 3.  At 
the lowest level (Channel), the participants coordinate their 
actions to establish, maintain or break an open communica-
tion channel. At the second (Signal) level, participants co-
ordinate the presentation and recognition of various com-
municative signals. At the third (Intention) level, partici-
pants coordinate to correctly interpret the meaning of these 
signals. Finally, at the fourth (Conversation) level, partici-
pants coordinate and plan their overall collaborative activi-
ties and interaction.  

Successfully engaging in dialog therefore requires a 
minimal set of competencies at each of these levels. And 
indeed, most spoken dialog systems are organized architec-
turally in components that closely mirror Clark’s proposed 
model: a voice activity detector and speech (and/or ges-
ture) recognition engine identify the communicative sig-
nals, a language understanding component which extracts a 
corresponding semantic representation, and a dialog man-
agement component which plans the interaction.  

We review in the rest of this section challenges raised by 
the multiparty and situated aspects of open-world dialog in 
each of these areas. We begin at the Channel level.  



3.1. Situated Multiparty Engagement  
As a prerequisite for interaction, participants in a dialog 
must coordinate their actions to establish and maintain an 
open communication channel. In single-user systems this 
problem is often solved in a trivial manner. For instance, in 
telephony-based spoken dialog systems the channel is as-
sumed to be established once a call has been received.  
Similarly, multimodal mobile applications oftentimes re-
solve the channel problem by using a push-to-talk solution.  

Although these solutions are sufficient and perhaps 
natural in closed, single-user contexts, they become inap-
propriate for systems that must operate continuously in 
open, dynamic environments. We argue that such systems 
should ideally implement a situated multiparty engagement 
model that allows them to fluidly engage, disengage and 
re-engage in conversations with one or more participants.  

Observational studies have revealed that humans negoti-
ate conversational engagement via a rich, mixed-initiative, 
coordinated process in which non-verbal cues and signals, 
such as spatial trajectory and proximity, gaze and mutual 
attention, head and hand gestures, and verbal greetings all 
play essential roles [2, 3, 14]. Successfully modeling this 
coordinated process requires that the system (1) can sense 
and reason about the engagement actions, state and inten-
tions of multiple agents in the scene, (2) can make high-
level engagement control decisions (such as whom to en-
gage with and when), and (3) can render engagement deci-
sions in low-level coordinated behaviors and outputs.  

Models for sensing the engagement state, actions, and 
intentions of various agents in the scene are, to a large ex-
tent, predicated on the system’s capabilities to understand 
the physical environment in which it is immersed, i.e. to 

detect, identify and track multiple agents, including their 
location, trajectory, focus of attention, and other engage-
ment cues. Higher-level inferences about the long-term 
goals, plans and activities of each agent can also provide 
informative priors for detecting engagement actions.  

Beyond the engagement sensing problem, at a higher 
level, the system must reason about the boundaries of each 
conversation and make real-time decisions about whom to 
engage (or disengage) with, and when. In a dynamic multi-
party setting these decisions have to take into account addi-
tional streams of evidence, and optimize tradeoffs between 
the goals and needs of the multiple parties involved (e.g., 
interrupting a conversation to attend to a more urgent one). 
In making and executing these decisions, the system must 
consider social and communicative expectations and eti-
quette. Finally, such high-level engagement decisions must 
be signalled in a meaningful, understandable manner to the 
relevant participants. For instance, in an embodied anthro-
pomorphic agent, engagement actions have to be rendered 
into a set of corresponding behaviors (e.g., establishing or 
breaking eye contact, changing body posture, generating 
subtle facial expressions, or issuing greetings) that must of-
ten be coordinated at the millisecond scale. 

3.2. Situated Multiparty Turn Taking 
Going one level up in Clark’s model, at the Signal level, 
the system must coordinate with other participants in the 
conversation on the presentation and recognition of com-
municative signals (both verbal and non-verbal, e.g., ges-
tures and emotional displays.) The coordinated process by 
which participants in a conversation take turns to signal to 
each other is known as turn-taking and has been previously 
investigated in the conversational analysis and psycholin-
guistics communities, e.g. [12, 18]. While computational 
models for turn-taking [19, 23, 24] have also been pro-
posed and evaluated to date, most current systems make 
simplistic one-speaker-at-a-time assumptions and have re-
lied on voice activity detectors to identify when the user is 
speaking. Phenomena like interruptions or barge-ins are of-
ten handled using ad-hoc, heuristic solutions, which can 
lead to turn-overtaking issues and ultimately to complete 
interaction breakdowns even in single-user systems [6].  

Open-world dialog requires the development of a com-
putational, situated multiparty turn-taking model. On the 
sensing side, such a model should be able to track the 
multi-participant conversational dynamics in real time by 
fusing lower-level evidence streams (e.g., audio and vis-
ual). The model should be able to identify the various 
communicative signals as they are being produced, and, in 
a multi-participant setting, identify the sender, the address-
ees (and potentially the over-hearers) for each signal. In 
addition, the model should be able to track who has the 
conversational floor, i.e., the right to speak, at any given 
point in time. On the control side, a multiparty situated 
turn-taking model should make real-time decisions (that 

     

Situated multiparty engagement  
• track engagement state, actions, intentions 
• make engagement decisions 
• render & coordinate engagement behaviors  

Channel 

Situated multiparty turn-taking  
• track multi-participant conversation dynamics 
• manage floor and coordinate outputs 

Signal 

Situated multiparty intention recog. 
• multi-modal fission and fusion 
• situated natural language understanding 

Intention 

Situated multiparty dialog management 
• roles, intentions, capabilities 
• multi-party discourse understanding 
• multi-party interaction planning 

Conversation 

Figure 3. Core competencies for open-world dialog
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are in line with basic conversational norms) about when 
the system can or should start or stop speaking, take or re-
lease the conversational floor, etc. Finally, the model must 
coordinate the system’s outputs and render them in an ap-
propriate manner. For instance, in an embodied conversa-
tional system, speech, gaze, and gesture must be tightly 
coordinated to signal that the system is addressing a ques-
tion to two conversational participants, or to indicate that 
the system is trying to currently acquire the floor.  

3.3. Situated Multiparty Intention Recognition 
At the Intention level, a dialog system must correctly inter-
pret the meaning of the identified communicative signals. 
In traditional dialog systems this is the realm of the lan-
guage understanding component. Given the static, rela-
tively limited communication context, the language under-
standing challenges tacked in traditional dialog systems 
have been typically limited to generating an appropriate 
semantic representation for the hypotheses produced by a 
speech recognizer, and integrating this information with 
the larger dialog context. In certain domains, issues like el-
lipsis and anaphora resolution also have played an impor-
tant role. Systems that use multiple input modalities (e.g., 
speech and gesture) face the problem of multi-modal fu-
sion at this level: signals received from the lower levels 
must be fused based on content and synchronicity into a 
unified semantic representation of the communicative act.  

The physically situated nature of open-world dialog 
adds new dimensions to each of these problems. In situated 
interactions, the surrounding environment provides rich 
streaming context that can oftentimes be leveraged for in-
tention recognition. For instance, in the receptionist do-
main, an interactive system might be able to infer inten-
tions based on identity (John always needs a shuttle at 3pm 
on Wednesday), spatiotemporal trajectories (people enter-
ing the lobby from inside the building are more likely to 
want a shuttle reservation than people entering the lobby 
from outside the building), clothing and props (a formally-
dressed person is more likely a visitor who wants to regis-
ter than an internal employee), and so on. Novel models 
and formalisms for reasoning about the streaming context 
and fusing it with the observed communicative signals to 
decode intentions and update beliefs are therefore required.  

An additional challenge for open-world dialog is that of 
situated language understanding. Physically situated sys-
tems might often encounter deictic expressions like “Come 
here!” “Bring me the red mug,” and “He’s with me”, etc. 
Resolving these referring expressions requires a set of lan-
guage understanding skills anchored in spatial reasoning 
and a deep understanding of the relevant entities in the sur-
rounding environment and of the relationships between 
these entities. The same holds true for pointing gestures 
and other non-verbal communicative signals.  

3.4. Situated Multiparty Dialog Management 
At the fourth level, referred as the Conversation level, par-
ticipants coordinate the high-level planning of the interac-
tion. This is the realm of dialog management, a problem 
that has already received significant attention in the spoken 
dialog systems community, e.g. [4, 6, 8, 16, 17, 20]. How-
ever, with the exception of a few incipient efforts [15, 25], 
current models make an implicit single-user assumption, 
and do not deal with the situated nature of the interactions.  

One of the main challenges for open-world spoken dia-
log systems will be the development of models for mixed-
initiative, situated multiparty dialog management. To illus-
trate the challenges in this realm, consider the situation in 
which a visitor, accompanied by her host, engages in dia-
log with a receptionist to obtain a visitor’s badge. In order 
to successfully plan multi-participant interactions, the dia-
log manager must model and reason about the goals and 
needs of different conversational partners (e.g. get a badge 
versus accompany the visitor), their particular roles in the 
conversation (e.g. visitor versus host), their different 
knowledge and capabilities (e.g. only the visitor knows the 
license plate of her car). Individual contributions, both 
those addressed to the system, and those that the partici-
pants address to each other, need to be integrated with a 
larger multi-participant discourse and situational context.  

Mixed-initiative interaction [10] with multiple partici-
pants requires that the system understands how to decom-
pose the task at hand, and plan its own actions accordingly 
(e.g. directing certain questions only to certain participants, 
etc.) All the while, the dialog planning component must be 
able to adapt to the dynamic and asynchronous nature of 
the open-world. For instance, if the visitor’s host disen-
gages momentarily to greet a colleague in the lobby, the 
system must be able to adjust its conversational plans on-
the-fly to the current situation (e.g. even if it was in the 
middle of asking the host a question at that point)  

Handling multiparty situations (e.g. a third participant 
appears and engages on a separate topic with the host) re-
quires that the system maintain and track multiple conver-
sational contexts, understand potential relationships be-
tween these contexts, and is able to switch between them. 
Furthermore, providing long-term assistance requires that 
the system is able to reason about the goals, activities and 
long-term plans of individual agents beyond the temporal 
confines of a given conversation. To illustrate, consider 
another example from the receptionist domain: after mak-
ing a reservation, a user goes outside to wait for the shuttle. 
A few minutes later the same user re-enters the building 
and approaches the reception desk. The receptionist infers 
that the shuttle probably did not arrive and the user wants 
to recheck the estimated time of arrival or to make another 
reservation; she glances towards the user and says “Two 
more minutes.” Inferences about the long-term plans of 
various agents in the scene can provide valuable context 
for the streamlining the interactions. 



3.5. Other Challenges 
So far, we have made use of Clark’s four-level model of 
grounding to identify and discuss a set of four core compe-
tencies for open-world spoken dialog systems:  multiparty 
situated engagement models, multiparty situated turn-
taking models, situated intention recognition, and mixed-
initiative multiparty dialog management. However, devel-
oping an end-to-end system requires more than a set of 
such individual models. A number of additional challenges 
cut across each of these communicative processes. In the 
remainder of this section, we briefly review five chal-
lenges: situational awareness, robustness and grounding, 
mixed-initiative interaction, learning, and integration.  

Given the situated aspect of open-world interaction, a 
major overarching challenge for open-world spoken dialog 
systems is that of situational awareness. As we have al-
ready seen, the ability to fuse multiple sensor streams and 
construct a coherent picture of the physical surrounding 
environment and of the agents involved in the conversa-
tional scene plays a fundamental role in each of the con-
versational processes we have previously discussed. Open-
world systems should be able to detect, identify, track and 
characterize relevant agents, events, objects and relation-
ships in the scene. Models for reasoning about the high-
level goals, intentions, and long-term plans of the various 
agents can provide additional information for establishing 
rapport and providing long-term assistance. In contrast to 
traditional work in activity recognition (e.g., in the vision 
or surveillance community), interactive systems also pre-
sent opportunities for eliciting information on the fly and 
learning or adapting such models through interaction.  

A second major challenge that spans the communicative 
processes discussed above is that of dealing with the uncer-
tainties resulting from sensor noise and model incomplete-
ness. Uncertainties abound even in human-human commu-
nication, but we are generally able to monitor the conversa-
tion and re-establish and maintain mutual ground. Open-
world dialog systems can benefit from the development of 
similar grounding models that explicitly represent and 
make inferences about uncertainties at different levels and, 
when necessary, take appropriate actions to reduce the un-
certainties and re-establish mutual ground. 

A third important overall challenge is that of mixed-
initiative interaction. So far, we have discussed the notion 
of mixed-initiative in the context of the dialog management 
problem. It is important to notice though that, like situ-
ational awareness and grounding, the notion of mixed-
initiative pervades each of the communicative processes 
we have discussed. At each level, the system’s actions 
need to be tightly coordinated with the actions performed 
by the other agents involved in the conversation.  Exam-
ples include the exchange of cues for initiating or breaking 
engagement, or “negotiating” the conversational floor. 
Mechanisms for reasoning about and managing initiative 
will therefore play a central role in each of these layers.  

A fourth important challenge that cuts across the four 
competencies discussed above is that of learning. Given 
the complexities involved, many of the models we have 
discussed cannot be directly authored but must be learned 
from data. Ideally, we would like to build systems that 
learn throughout their lifetimes, directly from interaction, 
from their experience, without explicit supervision from 
their developers. Furthermore, such systems should be able 
to share the knowledge they acquire with each other.  

Finally, another challenge not be underestimated is that 
of system integration, of weaving together all these differ-
ent components into an architecture that is transparent, 
modular, and operates asynchronously and in real-time to 
create a seamless natural language interaction. 

4.  A Prototype System 
We now describe a concrete implementation of a prototype 
system, named the Receptionist. The Receptionist is a situ-
ated conversational agent that can fluidly engage with one 
or more people and perform tasks typically handled by 
front-desk receptionists (e.g., making shuttle reservations, 
registering visitors, providing directions on campus, etc.) at 
our organization. In previous work in this domain [11], we 
have investigated the use of a hierarchy of Bayesian mod-
els and decision-theoretic strategies for inferring intentions 
and controlling question asking and backtracking in dialog. 
Here, we focus on exploring the broader challenges of 
open-world dialog.  
     The front-desk assistance domain has several properties 
that make it a valuable test-bed for this endeavor. The in-
teractions happen in an open, public space (building lob-
bies) and frequently involve groups of people. The com-
plexity of the tasks involved ranges from the very simple, 
like making shuttle reservations, to more difficult ones re-
quiring complex collaborative problem solving skills. Fi-
nally, a deployed system could provide a useful service and 
its wide adoption would create a constant stream of ecol-
ogically-valid real-world interaction data.  

In the rest of this section, we describe the Receptionist 
system, and discuss an initial set of models that address the 
core competencies for open-world dialog we have previ-
ously outlined. In particular, we focus our attention on the 
situational awareness, engagement, and multi-participant 
turn-taking capabilities of this system. Despite the prelimi-
nary and sometimes primitive nature of these models (they 
represent only a first iteration in this long-term research ef-
fort), as we shall see in Section 5, when weaved together, 
they showcase the potential for seamless natural language 
interaction in open, dynamic environments.  

We begin with a high-level overview of the hardware 
and software architecture. The current prototype takes the 
form of an interactive multi-modal kiosk, illustrated in 
Figure 4. On the input side, the system uses four sensors: a 
wide-angle camera with 140° field of view and a resolution 



of 640x480 pixels; a 4-element linear microphone array 
that can provide sound-source localization information in 
10° increments; a 19” touch-screen; and a RFID badge 
reader. As output, the system displays a realistic talking 
avatar head, which is at times complemented by a graphi-
cal user interface (e.g. when speech recognition fails the 
GUI is displayed and users can interact via the touch-
screen – see Figure 5.c). The system currently runs on a 
3.0GHz dual-processor Intel Xeon machine (total 8 cores).  

Data gathered by the sensors is forwarded to a scene 
analysis module that fuses the incoming streams and con-
structs (in real-time) a coherent picture of what is happen-
ing in the surrounding environment. This includes detect-
ing and tracking the location of multiple agents in the 
scene, reasoning about their attention, activities, goals and 
relationships (e.g. which people are in a group together), 
and tracking the current conversational context at different 
levels (e.g. who is currently engaged in a conversation, 
who is waiting to engage, who has the conversational floor, 
who is currently speaking to whom, etc.) The individual 
models that implement these functions are described in 
more detail in the sequel. 

The conversational scene analysis results are then for-
warded to the control level, which is structured in a two-
layer reactive-deliberative architecture. The lower-level, 
reactive layer implements and coordinates various low-
level behaviors (e.g. for engagement and conversational 
floor management, for coordinating spoken and gestural 
outputs, etc). The higher-level, deliberative layer makes 
conversation control decisions, planning the system dialog 
moves and high-level engagement actions.  

4.1. Situational Awareness 
The system currently implements the following situational 
awareness capabilities.  

Face detection and tracking. A multiple face detector 
and tracker are used to detect and track the location ݔሺݐሻ 
of each agent ܽ in the scene. The face detector runs at 

every frame and is used to initialize a mean-shift tracker. 
The frame-to-frame face correspondence problem is re-
solved by a proximity-based algorithm. These vision algo-
rithms run on a scaled-up image (1280x960 pixels), which 
allows us to detect frontal faces up to a distance of about 
20 feet. Apart from the face locations ݔሺݐሻ and sizes 
 ሻ, the tracker also outputs a face confidence scoreݐሺݓ
݂ܿሺݐሻ, which is used to prune out false detections but also 
to infer focus of attention (described later.) 

Pose tracking. While an agent is engaged in a conversa-
tion with the system, a face-pose tracking algorithm runs 
on a cropped region of interest encompassing the agent’s 
face. In group conversations, multiple instances of this al-
gorithm run in parallel on different regions of interest. The 
pose tracker provides 3D head orientation information for 
each engaged agent ߱തതതതሺݐሻ, which is in turn used to infer 
the focus of attention (see below.) 

Focus of attention. At every frame, a direct conditional 
model is used to infer whether the attention of each agent 
in the scene is oriented towards the system or not: 
ܲሺ݂ܽሺݐሻ|݂ܿሺݐሻ, ߱തതതതሺݐሻሻ. This inference is currently 
based on a logistic regression model that was trained using 
a hand-labelled dataset. The features used are the confi-
dence score from the face tracker ݂ܿሺݐሻ (this is close to 1 
when the face is frontal), and the 3D head orientation gen-
erated by the pose tracker ߱തതതതሺݐሻ, when available (recall 
that the pose tracker runs only for engaged agents.) 

Agent characterization. In addition to face detection 
and tracking, the system also performs a basic visual 
analysis of the clothing for each detected agent. The prob-
ability that the agent is formally or casually dressed 
ܲሺ݂݈ܽ݉ݎሺݐሻሻ is estimated based on the color variance in 
a rectangular patch below the face (e.g. if a person is wear-
ing a suit, this typically leads to high variance in this image 
patch). This information is further used to infer the agent’s 
likely affiliation, based on a simple conditional model 
ܲሺ݂݂݈ܽ݅݅ܽ݊݅ݐሺݐሻ|݂݈ܽ݉ݎሺݐሻሻ. Casually dressed agents 
are more likely to be Microsoft employees; formally 
dressed ones are more likely to be visitors. 

Figure 4. Receptionist system: (a) prototype, (b) architectural overview, and (c) runtime conversational scene analysis 
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Group inferences. Finally, the Receptionist system also 
performs a pairwise analysis of the agents in the scene to 
infer group relationships. The probability of two agents be-
ing in a group together ܲሺ݃ݑݎሺܽଵ, ܽଶሻሻ is computed by a 
logistic regression model that was trained on a hand-
labelled dataset. The model uses as features the size, loca-
tion and proximity of the faces, but also observations col-
lected through interaction. For instance, the system might 
ask a clarification question like “Are the two of you to-
gether?” A positive or negative response to this question is 
also used as evidence by the group inference model. 

4.2. A Multiparty Situated Engagement Model 
We now turn our attention to the problem of engagement 
[21], the process by which participants in a conversation 
establish, maintain and terminate their interactions (corre-
sponding to the first level of coordinated action in Clark’s 
language interaction model).  

The engagement model currently used in the Reception-
ist system is centered on a reified notion of interaction, de-
fined here as a basic unit of sustained, interactive problem-
solving. Each interaction involves two or more partici-
pants, and this number may vary in time: new participants 
may join an existing interaction, and current participants 
may leave an interaction. The system is actively engaged in 
at most one interaction at a time, but it can simultaneously 
keep track of additional, suspended interactions. Engage-
ment is then viewed as the joint activity of the system and 
its users by which interactions are initiated, terminated, 
suspended, resumed, joined or abandoned.  

To manage this coordinated process, the system: (1) 
constantly monitors the engagement state, actions and in-
tentions of surrounding agents, (2) makes high-level deci-
sions about whom to engage (or disengage) with and when, 
and (3) renders these decisions via behaviors such as estab-
lishing or breaking eye contact, issuing and responding to 
verbal greetings, etc. In the following subsections, we dis-
cuss each of these components in more detail.  
4.2.1. Engagement State, Actions, and Intentions 
The basis for making engagement decisions is provided by 
a model that tracks the engagement state ܵܧሺݐሻ, actions 
  .ሻ for each agent in the sceneݐሺܫܧ ሻ and intentionsݐሺܣܧ

The engagement state of an agent ܵܧሺݐሻ is modeled as 
a deterministic variable with two possible values: engaged 
and not-engaged, and is updated based on the joint actions 
of the agent and the system. The state transitions to en-
gaged when both the system and an agent take an engaging 
action. On the other hand, disengagement can be a unilat-
eral act: if either the system or an engaged agent take a dis-
engaging action, the state transitions to not-engaged.  

A second engagement variable, ܣܧሺݐሻ, models the ac-
tions that an agent takes to initiate, maintain and terminate 
engagement (i.e. to transition between engagement states). 
There are four possible engagement actions: engage, no-
action, maintain, disengage. An agent can take the first 

two actions only from the not-engaged state and the last 
two only from the engaged state. Currently, a direct condi-
tional model ܲሺܣܧሺݐሻ|ܵܧሺݐሻ, Ψሺtሻሻ is used to estimate 
an agent’s engagement action based on the current en-
gagement state and additional evidence Ψሺtሻ gathered from 
various sensors and processes in the system. Examples in-
clude the detection of greetings or calling behaviors (e.g. 
“Hi!” or “Laura!”), the establishment or the breaking of a 
conversation frame (e.g. the agent approaches and posi-
tions himself in front of the system; or the agent departs), 
continued attention (or lack thereof) to the system, etc.   

Apart from the engagement state and actions, the system 
also keeps track of a third variable, the engagement inten-
tion ܫܧሺݐሻ of each agent in the scene; this can be engaged 
or not-engaged. Intentions are tracked separately from ac-
tions since an agent might intend to engage the system, but 
not take a direct, explicit engagement action. A typical 
case is that in which the system is already engaged in an 
interaction and the participant is simply waiting in line. 
More generally, the engagement intention corresponds to 
whether or not the user would respond positively should 
the system initiate engagement. Currently, the engagement 
intention is inferred using a handcrafted direct conditional 
model ܲሺܫܧሺݐሻ|ܵܧሺݐሻ, ,ሻݐሺܣܧ Ψሺݐሻሻ that leverages in-
formation about the current engagement state and action, 
as well as additional evidence gleaned from the scene in-
cluding the spatiotemporal trajectory of the participant, the 
level of sustained mutual attention, etc. 

While the current models for sensing engagement ac-
tions and intentions are handcrafted, we are also investigat-
ing data-driven approaches for learning these models.  
4.2.2. Engagement Decisions  
Based on the inferred state, actions and intentions of the 
agents in the scene, as well as other additional evidence, 
the system makes high-level decisions about when and 
with whom to engage in interaction. The system’s en-
gagement action-space at contains the same four actions 
previously discussed. The actual surface realization of 
these actions in terms of low-level behaviors, such as 
greetings, making or breaking eye contact, etc. is discussed 
in more detail in the following subsection. 

As the Receptionist system operates in an open, multi-
party environment, the engagement decisions can become 
quite complex. For instance, new participants might arrive 
and wait to engage while the system is already engaged in 
an interaction; in some cases, they might even actively try 
to barge-in and interrupt the current conversation. In such 
cases, the system must reason about the multiple tasks at 
hand, and balance the goals and needs of multiple partici-
pants in the scene and resolve various trade-offs, for in-
stance between continuing the current interaction and tem-
porarily interrupting it to address a new (perhaps shorter 
and more urgent task).  

Currently, a simple heuristic model is used for making 
these decisions. If the system is not currently engaged in an 



interaction, it conservatively waits for a user to initiate en-
gagement (e.g. ܣܧሺݐሻ=engage), before making the deci-
sion to engage. In addition, if the system is currently en-
gaged in a conversation interaction, but other agents are 
present and waiting to engage (e.g. ܫܧሺݐሻ=engaged, 
-ሻ=no-action), the system may suspend the current inݐሺܣܧ
teraction to momentarily engage a waiting agent to either 
let them know that they will be attended to momentarily, or 
to inquire about their goals (this is illustrated in more detail 
in Section 5.) This decision is made by taking into account 
the appropriateness of suspending the current conversation 
at that point, and the waiting time of the agent in the back-
ground. We are currently exploring more principled mod-
els for optimizing the scheduling of assistance to multiple 
parties under uncertainties about the estimated goals and 
needs, the duration of the interactions, time and frustration 
costs, social etiquette, etc.  
4.2.3. Engagement Behaviors  
Each high-level engagement decision (e.g. Engage / Dis-
engage) is rendered into a set of coordinated lower-level 
behaviors, such as making and breaking eye contact, issu-
ing greetings, etc.  

The sequencing of these lower-level behaviors is highly 
dependent on the current situation in the scene, including 
the estimated engagement state, actions and intentions for 
each agent, the evolving state of the environment and sys-
tem (e.g. is the system in a conversation or not, are there 
other agents in the scene, what is their focus of attention, 
etc.) For instance, consider the case when the system is not 
yet engaged in any conversations and a high-level decision 
is made to engage a certain agent. If mutual attention has 
already been established, the engage behavior triggers a 
greeting. In contrast, if the agent’s focus of attention is not 
on the system, the engage behavior attempts to draw the 
agent’s attention by gazing towards him or her and saying 
“Excuse me!” in a raised voice. After the initial salutation 
the system monitors the spatiotemporal trajectory of the 
agent, and, if the agent approaches the system, establishes 
or maintains mutual attention, the engage behavior com-
pletes successfully; the agent’s engagement state is up-
dated to engaged. Alternatively if a period of time elapses 
and the agent does not establish mutual attention (or leaves 
the scene), the engage behavior completes with failure 
(which is signalled to the higher engagement control 
layer). The system implements several other engagement 
and disengagement behaviors dealing with agents joining 
or leaving an existing conversation. While a full descrip-
tion of these behaviors is beyond the scope of this paper, 
instances of various engagement behaviors are illustrated 
in the example discussed in Section 5. 

4.3. Multi-Participant Turn Taking 
While engaged in a conversation, the system coordinates 
with other conversational participants on the presentation 
and recognition of various communicative signals. Our 

current prototype attends to verbal signals (i.e., spoken ut-
terances) and to signals received from the graphical user 
interface, which can be accessed via the touch-screen. On 
the output side, the system coordinates spoken outputs with 
gaze and various gestures such as smiles, and furrowed or 
questioning eye-brows.  

A voice activity detector is used to identify and segment 
out spoken utterances from background noise. The speaker 
ܵ௨ for each utterance ݑ is identified by a model that inte-
grates throughout the duration of the utterance the sound 
source localization information provided by the micro-
phone array with information from the vision subsystem, 
specifically the location of the agents in the scene. For 
each identified utterance, the system infers whether the ut-
terance was addressed to the system or not. This is accom-
plished by means of a model that integrates over the user’s 
inferred focus of attention throughout the duration of the 
spoken utterance ܲሺ ௨ܶ ൌ  ሻሻ. If the user’sݐௌೠሺ݂ܽ|݉݁ݐݏݕݏ
focus of attention stays on the system, the utterance is as-
sumed to be addressed to the system; otherwise, the utter-
ance is assumed to be directed towards the other partici-
pants engaged in the conversation. Touch events detected 
by the graphical user interface are assumed to be generated 
by the closest agent, and addressed to the system.  

In order to fluidly coordinate its own outputs (e.g. spo-
ken utterances, gestures, GUI display) with the other 
agents engaged in the conversation, the system implements 
a simple multiparty situated turn-taking model. The model 
tracks whether or not each engaged agent currently holds 
the conversational floor ܵܨሺݐሻ  (i.e. has the right to 
speak), and what the floor management actions each en-
gaged agent takes at any point in time ܣܨሺݐሻ: No-Action, 
Take-Floor, Release-to-System, Release-to-Other, Hold-
Floor. These actions are inferred based on a set of hand-
crafted rules that leverage information about the current 
state of the floor ሼܵܨሺݐሻሽ, the current utterance ݑ, its 
speaker ܵ௨ and its addressees ௨ܶ. For instance, a Take-
Floor action is detected when a participant does not cur-
rently hold the floor but starts speaking or interacts with 
the GUI; a Release-to-System action is detected when a 
participant finishes speaking, and the utterance was ad-
dressed to the system; and so on. The floor state for each 
agent ܵܨሺݐሻ is updated based on the joint floor-
management actions of the system and engaged agents. For 
instance if a user currently holds the floor and performs a 
Release-to-System action, immediately afterwards the floor 
is assigned to the system.  

Based on who is currently speaking to whom and on 
who holds the floor, the system coordinates its output with 
the other conversational participants. For instance, the sys-
tem behavior that generates spoken utterances verifies first 
that the system currently holds the floor. If this is not true, 
a floor management action is invoked for acquiring the 
floor. The lower level behaviors render this action by coor-
dinating the avatar’s gaze, gesture and additional spoken 
signals (e.g. “Excuse me!”, if the system is trying to take 



the floor but a participant is holding it and speaking to an-
other participant).  

The current multi-participant turn-taking model is an 
initial iteration. It employs heuristic rules and limited evi-
dential reasoning, treats each participant independently, 
and does not explicitly take into account the rich temporal-
ity of interactions. We are exploring the construction and 
use of more sophisticated data-driven models for jointly 
tracking through time the speech source ܵ௨, target ௨ܶ, fo-
cus of attention ݂ܽሺݐሻ  and floor state ܵܨሺݐሻ and actions 
 ሻ in multi-participant conversation, by fusingݐሺܣܨ
through time audio-visual information with additional in-
formation about the system actions (e.g. its pose and gaze 
trajectory, etc.) and the history of the conversation: 
ܲሺܵ௨ , ௨ܶ , ,ሻݐሼሽሺ݂ܽ ܨ ሼܵሽሺݐሻ,  ሻሻݐሻ|Ψሺݐሼሽሺܣܨ

4.4. Situated Intention Recognition 
To infer user goals and intentions, the Receptionist system 
makes use of several hybrid belief updating models that in-
tegrate streaming evidence provided by the situational con-
text, with evidence collected throughout the dialog. For in-
stance, the system relies on a conditional goal inference 
model ܲሺܩ |݂݂݈ܽ݅݅ܽ݊݅ݐ , ,ሺܽݑݎ݃ ܽሻ, -ሻ that curܩܵ
rently takes that takes into account the estimated actor af-
filiation and whether or not the actor is part of a larger 
group (e.g. Microsoft employees are more likely to want 
shuttles than to register as visitors, people in a group are 
more likely to register as visitors, etc.) If the probability of 
the most likely goal does not exceed a grounding threshold, 
the system collects additional evidence - ܵܩ - through in-
teraction, by directly asking or confirming the speculated 
goal. Similarly, in case an agent’s goal is to make a shuttle 
reservation, the number of people for the reservation is in-
ferred by a model that integrates information from the 
scene (e.g. how many people are present) with data gath-
ered through dialog. The runtime behavior of these models 
is illustrated in more detail in the following section.  

5.  A Sample Interaction 
We now illustrate how the models outlined in the previous 
section come together to create a seamless multiparty situ-
ated interaction, by describing a sample interaction with 
the receptionist system. Figure 5 shows several successive 
snapshots from a recorded interaction, with the runtime 
annotations created by the various models, as well as a 
capture of the system’s display and a transcript of the con-
versation. A full video capture is available online [22].  

Initially two participants are approaching the system 
(A14 and A15 in Figure 5). The system detects and tracks 
their location. As the users get closer and orient their atten-
tion towards the system, the engagement model indicates 
that they are performing an engaging action. In response, 
the avatar triggers an engaging behavior, greets them and 
introduces itself (line 3 in Figure 5).  

After the initial greeting, the system attempts to ground 
the goals of the two participants. The group inference 
model indicates that, with high likelihood (0.91 in Figure 
5.a) the two participants are in a group together. The cloth-
ing and affiliation models indicate that the two participants 
and dressed casually, and therefore most likely Microsoft 
employees. Based on this information, the system infers 
that the participants most likely want a shuttle. Since the 
likelihood of the shuttle goal does not exceed the ground-
ing threshold, the system confirms this information through 
dialog, by glancing at the two participants and asking: “Do 
you need a shuttle?” A14 confirms.  

Next, the system asks “Which building are you going 
to?” At this point (see also Figure 5.b) the first participant 
(A14) turns towards the second one (A15) and initiates a 
side conversation (lines 8-12). By fusing information from 
the microphone array, the face detector and pose tracker, 
the multiparty turn-taking model infers that the two par-
ticipants are talking and releasing the floor to each other. 
Throughout this side conversation (lines 8-12) the avatar’s 
gaze follows the speaking participant. In addition, the rec-
ognition system is still running and the system overhears 
the building number from this side conversation.  When the 
two participants turn their attention again towards the sys-
tem, the turn-taking model identifies a Release-To-System 
floor action. At this point, the system continues the conver-
sation by confirming the overheard information: “So 
you’re going to 9, right?” A14 confirms again.  

Next, the system grounds how many seats are needed for 
this reservation. Here, a belief updating model fuses infor-
mation gathered from the scene analysis with information 
collected through interaction. Based on the scene, the sys-
tem infers that most likely this shuttle reservation is for 
two people (A14 and A15). The likelihood however does 
not exceed a grounding threshold (since at this point a third 
agent has already appeared in the background – A16). The 
system therefore confirms the number of seats through dia-
log, by asking “And this is for both of you, right?” Once 
the number of people is grounded, the system notifies A14 
and A15 that it is currently making a reservation for them.  

As we have already noted, while A14 and A15 where 
engaged in the side conversation (lines 8-12), a new par-
ticipant (A16) entered the scene – see Figure 5.b. When the 
new participant appears, the system glances for a fraction 
of a second at him (this is a hard-coded reactive behavior). 
The group models indicate that A16 is most likely not in a 
group with A14 and A15. The clothing and affiliation 
models for A16 indicate that this participant is dressed 
formally and therefore most likely to be an external visitor. 
As a consequence, the activity and goal models indicate 
that A16 is waiting for the receptionist with the intention to 
register.  

After the avatar notifies A14 and A15 that it is making 
their shuttle reservation, these two participants turn again 
to each other and begin another side conversation. The sys-
tem decides to temporarily suspend its conversation with 



A14 and A15 and engages with A16 by asking “Are you 
visiting someone?” A16 confirms, and the system notifies 
A16 that it will help with the registration momentarily. The 
decision to suspend the conversation with A14 and A15 is 
taken by the high-level engagement control model, which 
is aware of the fact that the current conversation is inter-
ruptable at this point (the system is waiting for the shuttle 
backend to respond and A14 and A15 are talking to each 
other), and that, with high likelihood, there is an additional 
participant in the scene (A16) waiting for assistance.  

After the system notifies A16 that it would attend to his 
needs momentarily (line 22), the shuttle backend responds 
with the initial reservation. The system turns its attention 
again at A14 and A15, and attempts to resume that conver-
sation, by invoking a corresponding engagement behavior. 
Since the two participants are still talking to each other and 
not paying attention to the system, the Resume-
Conversation behavior triggers an “Excuse me!” prompt 
(line 22). As soon at A14 and A15’s attention turns back to 
the system, the avatar provides the information about the 
shuttle number and estimated time of arrival (line 24). The 

1 A14, A15: [approaching, talking  to each other] 
2 A14, A15: [getting close and turning their attention to the system] 
3 S: Hi, my name is Laura and today I’m here to help the recep-

tionist with shuttle reservation 
4 A14: I’m Dan and this is Eric 
5 S: [glancing at both participants]  

Nice to meet you. Do you need a shuttle? 
6 A14: Yes 
7 S: [turns to A14]  

Which building are you going to? 
8 A14: [turns to A15]  

I forget where are we going? 
9 S:  [quickly glances at A16, who just entered the scene; then fol-

lows the side conversation that A14 and A15 are having, by 
turning its attention towards the speaking participant]  

10 A15: [turns to A14]  
I think it’s building 9? 

11 A14:  [still looking at A15]  
Are you sure? 

12 A15:  [still looking at A14]  
Yes 

13 A14,A15: [both turn back towards the system] 
14 S: [glancing at both A14 and A16] 

So you’re going to building 9, right? 
15 A14: Yes 
16 S: And this if for both of you, right? 
17 A14: Yes 
18 S: I’m making a shuttle reservation for building 9 for 2 people. In 

case you want to correct anything, say or press start over.  
19 S:  [turning to A16] 

Are you visiting someone? 
20 A16: Yes 
21 S: I’ll help you register in just a moment.  
22 S: [turning back to A14 and A15] 

Excuse me. 
23 A14,A15: [turning their attention back to the system] 
24 S: You will be on shuttle 53. It should be here any second.  
25 A14: All right, thank you. Bye 
26 S:  [glancing at A14 and A15] 

Bye-bye 
27 A16: [approaching]  

Hi 
 

(a) 

(b) 

(c) 

(d) 

Figure 5. Sample interaction with Receptionist. 



two participants then disengage and the system turns its at-
tention back to and engages with A16.  

Conclusion and Future Work 
We have outlined a research agenda aimed at developing 
computational systems that can interact naturally and pro-
vide assistance with problem-solving needs over extended 
periods of time in open, relatively unconstrained environ-
ments. We first introduced the pursuit and challenges of 
developing systems competent in open-world dialog—with 
the ability to support conversation in an open-world con-
text, where multiple people with different needs, goals, and 
long-term plans may enter, interact, and leave an environ-
ment, and where the physical surrounding environment 
typically provides streaming evidence that is important for 
organizing and conducting the interactions.  

The dynamic, multiparty and situated nature of open-
world dialog brings new dimensions to traditional spoken 
dialog problems, like turn-taking, language understanding 
and dialog management. We found that existing models are 
limited in that they generally make an implicit single-user 
assumption and are not equipped to leverage the rich 
streaming context available in situated systems. Open-
world settings pose new problems like managing the con-
versation engagement process in a multiparty setting, 
scheduling assistance to multiple parties, and maintaining a 
shared frame that includes inferences about the long-term 
plans of various agents--inferences that extend beyond the 
confines of an acute interaction. 

To provide focus as well as an experimental testbed for 
the research agenda outlined in this paper, we have devel-
oped a prototype system that displays several competencies 
for handling open-world interaction. The prototype weaves 
together a set of early models addressing some of the open-
world dialog challenges we have identified, and showcases 
the potential for creating systems that can interact with 
people on problem-solving needs with the ease and eti-
quette expected from a human.  

We take the research agenda and the prototype described 
in this paper as a starting point. We plan to investigate the 
challenges we have outlined, and to develop and empiri-
cally evaluate computational models that implement core 
competencies for open-world dialog. We hope others will 
join us on the path towards a new generation of interactive 
systems that will be able embed interaction and computa-
tion deeply into the natural flow of daily tasks, activities 
and collaborations. 
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