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Figure 1: First person view of someone performing a physical task (preparing coffee) according to an instructor’s directions.
Red dots and lines illustrate the performer’s gaze trajectory. This work explores various modeling approaches that leverage
behavioral signals from gaze, head, and hand movement for confusion detection in physical tasks.

Abstract
A longstanding goal in the AI and HCI research communities is
building intelligent assistants to help people with physical tasks. To
be effective in this, AI assistants must be aware of not only the phys-
ical environment, but also the human user and their cognitive states.
In this paper, we specifically consider the detection of confusion,
which we operationalize as the moments when a user is “stuck” and
needs assistance. We explore how behavioral features such as gaze,
head pose, and hand movements differ between periods of confu-
sion vs no-confusion. We present various modeling approaches
for detecting confusion that combine behavioral features, length of
time, instructional text embeddings, and egocentric video. Although
deep networks (e.g., V-Jepa) trained on full video streams perform
well in distinguishing confusion from non-confusion, simpler mod-
els leveraging lighter weight behavioral features exhibit similarly
high performance, even when generalizing to unseen tasks.
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1 Introduction
AI-based assistance systems for tasks in the physical world have
the potential to augment human abilities by interpreting physical
environments, interactive context, and user activities. However,
the fluency and effectiveness of AI assistance relies on cooperation
and coordination with human teammates [15, 51]. When humans
collaborate on tasks, they naturally respond and adapt to each
other’s cognitive states—such as confusion, frustration, intention,
and engagement—to provide assistance in ways that are timely,
relevant, and helpful. For AI agent collaborators to fluidly provide
assistance in physical tasks, they will similarly need to understand
and react to users’ cognitive states.

One effective way for an AI system to gain insight into user cogni-
tive states is through human behavior modeling. Explicit behavioral
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signals, such as speech, as well as implicit behavioral signals, such
as gaze and facial expressions, can be used by AI systems to esti-
mate the user’s mental model of the task at hand, their intentions,
and their cognitive states. Prior works in human-robot interaction
have used behavioral signals such as facial expressions, gaze, and
acoustic features to develop models for robot error detection and
for recognizing user intentions [3, 23, 50]. In human-computer in-
teraction more generally, behavioral signals such as EEG, heart
rate, eye gaze patterns, and facial expressions have been used for
assessing, e.g., trust [1], cognitive load [45], and frustration [17].

In this paper, we focus on modeling implicit behavioral signals
for detecting user confusion during AI-assisted procedural tasks
in the physical world. Different tasks require different behavioral
patterns for task completion [48] and systems need to be able to
proactively detect confusion across tasks to be useful. Unmitigated
user confusion can lead to frustration towards the task [2, 24] and
disengagement [14], so systems should be aware and intervene
upon detection [46]. Prior works researching confusion detection
modeled implicit behavioral signals such as gaze-based features,
facial expressions, speech, and screen-based features (e.g.,mouse be-
havior). These works were primarily situated in contexts involving
screen-based tasks—such as learning [60] and dialogue tasks [30]—
or where the user is seated, such as driving [18]. To the best of
our knowledge, there has been little work in the area of confu-
sion detection in fully 3D physical interactions, nor on assessing
generalizability across a variety of procedural tasks.

In this paper, we operationalize confusion—a complex and nu-
anced cognitive state—in the context of procedural tasks in the
physical world. Recognizing that behaviorally observable confu-
sion is a narrower phenomenon than the internal subjective experi-
ence of confusion, we operationalize confusion as a period of time
when a user is visibly “stuck” and needs assistance to make task
progress. Taking inspiration from human-human interaction, we
leveraged HoloAssist [56], a large-scale dataset of human-human
task assistance, to identify sequences of observable confusion in
task execution. Figure 1 shows an example of a human instructor re-
sponding to a task performer’s nonverbal display of confusion and
providing follow-up information to mitigate. We trained various
models for detecting confusion from behavioral features combined
with other modalities such as instruction text embeddings and
egocentric video. Our work makes the following contributions:

• We define confusion in the context of procedural tasks such
that it can be operationalized by an AI-powered physical
task assistant in the physical world.

• We trainmodels from behavioral features for confusion detec-
tion during physical tasks and compare with other modalities
like video and instruction text embeddings.

• We explore the benefits of a multimodal approach to detect-
ing confusion in physical tasks.

2 Background
2.1 AI Assistants for Physical Tasks
AI assistants for physical tasks can provide both instructive guid-
ance and automatic feedback to improve a human’s task perfor-
mance and mitigate task breakdowns. AI assistants have been
shown to be effective in complex procedural tasks by lowering

user mental demand, reducing error rates during task execution,
and decreasing the time it takes to repair errors [8, 16, 19, 52].
However, there are mixed results regarding their impact on task
completion time, with some showing increases [52] and others,
decreases [8, 16]. To be effective, intelligent interactive systems
must perceive a user’s actions and the environment, rationalize
the implications of actions, and establish and maintain grounded,
productive interactions with the user [10].

A potentially effective way for providing assistance is through
Augmented Reality (AR) devices. In addition to conventional in-
structions, these devices can also overlay visual cues on the physical
world [11], leading to improved spatial awareness [57]. As such,
they have found applications in various fields, including training for
surgical tasks [7], providing guidance during physical exercises [53],
helping cognitively impaired workers [16], and assisting repair and
maintenance tasks in manufacturing, military, and space [8, 19].

AI assistants have potential to enhance task performance and
maintain efficient human-assistant interaction by being proactive
[21]. Unlike purely reactive systems, proactive systems not only
respond to user actions but also anticipate upcoming events, thereby
building trust [25]. Example use cases for proactive interventions
include providing alerts when a user makes (or ideally when the
user is about to make) a mistake in an assembly task [13], and
offering guidance on how to navigate and formulate queries for
how-to videos related to physical tasks [31]. Creating proactive
systems requires modeling whether and when an intervention is
necessary, and what the intervention style should be [38]. These
aspects are crucial as different individuals prefer varying types
and amounts of proactive assistance [31, 33], and an excessively
proactive approach may not be ideal [42]. Moreover, implementing
these techniques requires perception and detection of explicit and
implicit signals, so systems must be cautious to avoid excessive
false positives, as these could degrade the interaction [12, 34].

2.2 Modeling Cognitive States from Behavior
Effective human-computer interactions necessitate a shared under-
standing between the user and the system [32]. The system needs to
be aware of human capabilities, and must understand, predict, and
adapt to their cognitive states [20, 41]. User cognitive states (e.g.,
frustration, confusion, intention, and engagement) can significantly
impact interaction dynamics and fluency [4]. Therefore, generat-
ing an accurate model of a user’s cognitive state and intentions is
necessary for fluent and effective interactions [15, 44, 51].

People produce explicit and implicit behavior signals not only
in social interactions, but also when engaged in non-social, phys-
ical tasks [35, 50]. These signals can serve as observable reflec-
tions of users’ intentions and internal states [9, 15, 51]. Estimates
of cognitive states must capture both the inherent variability of
human responses and underlying consistent behavioral patterns
across tasks and humans. Behavioral signals have been used to
detect errors in physical tasks (i.e., hand and gaze movements [59]),
user uncertainty (i.e., facial expressions, gaze, head movement, and
speech [47]), and user intention in human-robot interaction (i.e.,
facial expressions, gaze, and verbalizations [3, 23]). Additionally,
various behavioral signals like EEG, heart rate, and eye gaze have
proven useful in gauging user trust in AI suggestions [1], while
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confirm previous action

“Thank you.”

high-level instruction

“Please empty the drip tray.”

follow-up

“To remove the drip tray, you should take the thing where the coffee 
came out and put it a bit higher to slide it up.”

high-level instruction

“Please change the 
battery.”

high-level instruction

“Great, now turn on 
the camera.”

high-level instruction

“Next, change the 
color ink cartridge.”

follow-up

“You’ll need to open 
the front panel.”

high-level instruction

“First detach the lens 
from the camera.”

performer question

“Hmm… detach what?”
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Figure 2: Data modalities from the HoloAssist dataset, and example execution intervals computed from utterance annotations.
(A) Performer head pose. (B) Hand tracking. (C) 3D gaze tracking. (D) Performer’s egocentric RGB view at every frame. (E)
Instructor and performer utterance annotations fromHoloAssist. (F) Text transcripts for instructions. (G) We compute temporal
gaze fixations using the I-VT algorithm [39]. (H) Example of a confusion execution interval between the end of a high-level
instruction and the start of an instructor follow-up. (I) Example of a confusion execution interval between the end of a high-level
instruction and the start of a performer question. (J) Example of a no-confusion execution interval between the end of a
high-level instruction and the start of the next high-level instruction.

other metrics—such as gaze patterns and facial expressions—have
been used to quantify cognitive load and frustration [17, 45].

The cognitive state of confusion is important for intelligent sys-
tems to adapt and respond to. Unmitigated confusion not only pre-
vents effective interaction, but is also a precursor to user frustration
and disengagement [2, 14, 24]. The implications of not addressing
confusion promptly and adequately can derail the user experience
and deteriorate the effectiveness of systems, especially in important
areas like surgery [22], learning [2], and driving [18].

Therefore, systems should be confusion-aware and intervene
upon detection [46]. Gaze is a common indicator and was found
to be statistically significantly different between states of con-
fusion and confidence [18, 30, 55, 58]. Additional studies have
integrated other behavioral, verbal, and physiological signals—
such as emotions [30], head pose [22], verbal interactions [46],
facial expressions [27], mouse movements [26], and EEG [36, 60]—
demonstrating their relevance in detecting confusion across verbal
interactions and 2D screen-based interactions. However, there ap-
pears to have been little work to understand and detect confusion
in procedural tasks conducted in the 3D physical world.

3 Confusion during Physical Tasks
When developing an AI assistant for procedural tasks that is able
to address when a user is confused and provide proactive help,
the assistant needs a model to infer the user’s internal cognitive
states. One route is to learn from human-human interactions, as

humans are adept at detecting when others are confused based on
explicit or implicit signals. Examples of such signals are: deviation
in task progress with respect to the observer’s mental model of what
should have happened, prior instruction complexity, and human
behavioral signals. We propose the use of these explicit and implicit
signals for detecting overt confusion. Our initial modeling approach
simplifies the problem space into binary classification—intervals of
time are labeled to correspond either to confusion or no-confusion.

3.1 Defining Confusion
In psychology, confusion is commonly defined as an epistemic emo-
tion or affective state where there is a misalignment between a
person’s existing knowledge and new information [14, 54]. Starting
from that definition and adapting it to the context of procedural
tasks in the physical world (where only task completion, not learn-
ing, is the goal), we define confusion as an internal cognitive state
where there is a misalignment between a person’s mental model of the
task or world state and the actual state of the task or world. In proac-
tive AI assistant systems, taking action based on inferred confusion
needs to be done cautiously, in order to reduce false positives and so
that the assistant is not perceived as annoying [12, 34]. Therefore,
we operationalize user “confusion” as a perceptible moment in time
where assistance would be both relevant and helpful. In addition,
from a practical standpoint, this form of confusion can be labelled
from a third-party perspective, without having the participants
self report when they felt confused. However, it is important to
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emphasize that our operationalized definition of confusion for this
work does not capture internal mental processes. Therefore, in the
remaining parts of the paper, we move forward with this narrower
operationalized definition of behaviorally observable confusion, ac-
knowledging the broader and more subtle notion of confusion as a
hidden affective state that it is related to.

3.2 Curating a Confusion Interval Dataset
Our overall goal is to uncover when and how confusion is exhibited
and responded to during physical procedural tasks, and to train
machine learning models to detect those moments of confusion. To
this end, we curated a targeted dataset of “confusion intervals” from
the publicly available HoloAssist dataset [56]. HoloAssist was not
specifically collected to study confusion, but it does contain natural-
istic data of human performers executing 22 real-world procedural
tasks under the guidance of human instructors (222 total partici-
pants). Several modalities are captured, including the performer’s
egocentric video, audio, depth, and behavioral signal data (i.e., gaze,
hands, and head) from a HoloLens 2 device (Figure 2). Annotations
with timestamped transcripts of all instructor and performer utter-
ances are also provided, each labeled with a “conversation purpose.”
For this work, we focus on utterances with the following labels:

• High-level instruction: a task step provided by the instructor.
Without these instructions, the performer would not know
what to do. For example, "Next, insert the micro SD card."

• Follow-up: an instructor utterance that is intended to clarify,
elaborate, or provide additional information with respect
to the current high-level instruction. For example, "Flip it
around, it’s the slot on the bottom."

• Question: a performer utterance that is asking a question
about the current task step. For example, "Uh, this one?"

We use 14 of the 22 HoloAssist tasks in our curated dataset,
excluding all furniture assembly and disassembly tasks, as these
typically involved only a single high-level instruction at the start
(e.g., "Now disassemble the table"), and then no further instruc-
tions or follow-ups were needed. The remaining 14 tasks exhibit
many more step-by-step high-level instructions, follow-ups, and
performer questions throughout the interactions, and involve ob-
jects of varying size and complexity, such as printers, coffee ma-
chines, cameras, and circuit breakers (full list in Figure 3). HoloAs-
sist contains 1114 total sessions involving these tasks. The high-level
instructions in our dataset subset contained 8.69 words on average.

We extracted execution intervals from the HoloAssist data, and as-
signed ground truth labels of confusion and no-confusion. We define
an execution interval as the period of time between the end of one
high-level instruction and the start of the first following intervention.
An intervention can either be the next high-level instruction, an
instructor follow-up, or a performer question (see above). We do not
consider intervals in which the performer makes a mistake and the
instructor corrects their task error. Otherwise, if the intervention
was a proactive follow-up from the instructor or a question asked
by the performer, we take it to mean that the performer needed
help in order to proceed, and therefore assign to that interval a label
of confusion (according to our operationalized definition above). If
on the other hand the next intervention is a new high-level instruc-
tion, we infer that the performer successfully completed the current
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Figure 3: Graph illustrating the count of confusion and no-
confusion execution intervals computed from the HoloAssist
dataset, broken down by task type.

step without any need for help, and assign a label of no-confusion.
Concrete examples are visualized in Figure 2.

When extracting and labeling execution intervals from the dataset,
we exclude intervals that are extremely short or long (less than
two seconds and greater than 60 seconds), or if there are any other
utterances occurring within the last three seconds of the interval
before the start of the intervention (e.g., performer’s self-talk or the
instructor asking the performer to adjust their HoloLens camera
view). See Figure 3 for a breakdown of intervals across task.

3.2.1 Train and Test Sets. We created a task-stratified train-test
split containing 1,442 confusion intervals (average length = 9.40s)
and 2,325 no-confusion intervals (average length = 14.12s) for a
total of 3,767 intervals. We also started with 1,044 intervals in the
test set. Although the above heuristics work reasonably well for
curating a set of confusion and no-confusion execution intervals, the
existing HoloAssist transcriptions and intervention annotations are
somewhat noisy, which can lead to incorrectly assigned ground
truth on some intervals. For example, if an intervention was incor-
rectly labeled as a follow-up when it was actually a new high-level
instruction, then the corresponding interval label should change
from confusion to no-confusion, and vice versa. If the intervention
was actually the instructor correcting a mistake in the performer’s
action, then the interval should not have been included in our
dataset at all. In order to ensure a clean test set for evaluation, the
authors manually inspected all 1,044 automatically extracted inter-
vals (this time-intensive process was not feasible for the train set)
and determined that 940 were labeled correctly (90.0%), 31 needed
to be removed (3.0%), and 73 needed to switch labels (7.0%), result-
ing in 1,013 corrected intervals in the test set (333 confusion, 680
no-confusion).

4 Exploring Behavioral Features
Implicit behavioral signals are a powerful modality for modeling
user internal cognitive states, effective in both capturing the vari-
ability of people’s behaviors and responses, and having the potential
to generalize across environments, embodiments, and tasks [29, 50].
Prior work has shown that gaze is a strong predictor for confusion
in 2D interaction (e.g., [40]). The HoloAssist dataset provides not
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only gaze signals, but also video, depth, audio, head, and hand sig-
nals during procedural task execution, allowing us to explore other
behavior signal modalities. A goal of this work is to determine how
these different implicit behavioral signals vary based on confusion,
and if they are good input features for confusion detection.

Anecdotally, we observed from the data that when performers
were confused, they often exhibited a few different categories of
behaviors: fast eye movement in conjunction with lack of hand
movement, lack of eye movement in conjunction with fast hand
movement, getting closer to objects (either through bringing the ob-
ject closer to the head or moving the head closer to the workspace),
and taking a step back from the workspace.

Based on prior work and our observations, we chose to focus on
gaze, hand, and head features. We handcrafted several low-level fea-
tures pertaining to each of these modalities to filter out some of the
noise that often comes with behavior signals and distill them into a
smaller number of features. This approach was designed to prevent
overfitting to the dataset, allowing for potential generalizability
across different tasks. The features were chosen so they would not
explicitly represent task-specific and environment-specific infor-
mation, such as absolute positions. Additionally, since behavioral
signals might fluctuate over the course of an entire execution in-
terval, we sampled each low-level feature over different temporal
segments in the interval to capture changes over time.

We defined 48 behavioral features across gaze (7 features), hands
(36 features), and head (5 features) modalities, and computed all
features for the full interval, first two seconds of the interval, and
last two seconds of the interval, resulting in 144 total features. For
gaze features within the interval, we considered angular eye speed
(average and standard deviation), number of gaze fixations per
second, fixation duration (average, standard deviation, and total
percentage of the interval), and percentage of valid gaze tracking
values. For hand features, we considered linear joint speeds (average,
standard deviation, and percentage of valid values) and distance
from the head (average, standard deviation, and percentage of valid
values) for the wrist, index tip, and thumb tip joints on the left and
right hands. Finally, for the head, we compute features for linear
and angular head speed (average and standard deviation) as well as
percentage of valid head tracking values in the interval.

4.1 Implicit Behavioral Signals Dataset Analysis
We first analyzed our curated dataset and computed features to
understand the differences in behavioral signals exhibited by per-
formers during intervals of confusion vs no-confusion. The following
analyses were computed using Mann-Whitney U Tests as the data
was not normally distributed. Additionally, since our analysis in-
cludes multiple t-tests, we used the Benjamini-Hochberg correction
to adjust our p-values and control for Type I errors.

All gaze features exhibited statistically significant differences
between confusion and no-confusion intervals—with confusion in-
tervals exhibiting faster and more variable gaze with shorter and
more frequent fixations. This result matches our anecdotal obser-
vations that periods of confusion seem to often be marked by fast
scanning behaviors as the performer attempts to find an object or
part that is relevant to completing the current task step. The head
features of average linear and angular speed were also significantly

different across interval types, with faster and more variable speeds
during confusion. For the hands, left-hand joints (wrist, index tip,
and thumb tip) were statistically significant indicators, with lower
variance in joint speeds and larger average joint speeds in confusion
intervals than no-confusion ones. The right-hand joints’ average
speeds were statistically significant with lower speed in confusion
intervals than no-confusion ones. This result can be intuitively ex-
plained by the hand moving less when the performer is confused
and not sure what to do next, but moving faster when the performer
is confidently executing the physical task step. See Appendix A for
detailed statistical test for each feature.

The statistically significant differences in these features across
confusion vs no-confusion intervals suggests the potential power
that these features might have in detecting user confusion.

5 Learning to Detect Confusion
Informed by prior work and the data analysis above, we observed
that behavioral signals have the potential to be discriminitive, and
could contain useful information for confusion modeling and detec-
tion. We explore whether behavioral signals can be used to detect
confusion and whether these models can be augmented with other
features without compromising generalizability. Our approach sim-
plifies the problem space to a binary classification between con-
fusion and no-confusion, taking into account the entire interval of
time leading up to a potential intervention (e.g., following up with
a clarification or moving on to the next step). This approach in
essence learns how to intervene based on a confusion classification,
but determining when to intervene is left for future work.

5.1 Method
We first look to leverage lightweight classification models for future
integration into interactive agent systems for real-time confusion
detection. The inputs into these models are the behavioral features,
described above, calculated across the three temporal segments
(full interval, first two seconds, and last two seconds). Models are
trained to predict confusion as the positive class.

In addition, to gain a better understanding of this problem space,
we explored whether and how other sources of knowledge, such
as the content of the instructions, video-based information, and
temporal information can aid with our confusion detection task.
We constructed models that leverage these knowledge sources and
we also explored combining them with the behavioral features in
a multimodal approach. Specifically, the instruction transcripts,
video, and temporal information were modeled as follows:

• Instructions: To leverage the content of the instructions, we
used the CLIP [43] embeddings of the text of the high-level
instructions for each interval. The intuition behind includ-
ing this information is that different instructions may have
different prior likelihoods of causing confusion.

• Video: To leverage the ego-centric video data, we used V-
Jepa [5], a pretrained state-of-the-art video encoding model
that can be used in video prediction tasks. Following the
evaluation protocol described in [5], we kept the V-Jepa pre-
trained backbone encoder frozen (used the ViT-L model) and
trained an additional cross-attentionmodule with a learnable
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query token, followed by a linear classifier, to predict con-
fusion. Our intention was to explore how a heavier-weight,
state-of-the-art video model fares against and complements
a simpler, behavioral feature-based approach.

• Temporal: Finally, we also explored the use of the length of
each interval (in seconds) as a source of information.

As mentioned above, the instruction, video and temporal fea-
tures were also combined with the behavioral signals. For the in-
struction and temporal features, we simply concatenated the CLIP
embeddings or interval duration with other features as input for a
confusion detection model. When using video data, we employed
two methods of integration. In a first approach, dubbed concatenate,
we simply concatenated the additional features (e.g., behavioral,
instruction embedding, time) to the output vector from the cross-
attention probe operating over the V-Jepa encoder, and fed the
larger (concatenated) vector into a final linear layer. In the second
approach, dubbed late fusion, we used the prediction probabilities
generated by trained video model described earlier as a single addi-
tional feature, which was then combined with the other features
for processing by another light-weight confusion detection model.

For non-video models, we explored the use of Random Forest,
SVM, XGBoost, and Neural Nets, with Explainable Boosting Ma-
chines (EBM) [37] being our ultimate choice. We construct an EBM
model with 100 bins and two max leaves.

We conducted two tests: (1) The within-task test sought to de-
termine different features’ abilities to detect confusion, irrespective
of the physical task. The training dataset consisted of data from
all of the tasks. (2) The between-task test aimed to identify the
potential that different features have to generalize across different
tasks. Training was conducted in a “leave-one-task-out” regime.

5.2 Performance Measures
We used the following metrics to assess model performance with
various sets of features in detecting confusion for both the within-
task and between-task tests.

• Accuracy (ACC): The percentage of intervals classified cor-
rectly. 67.1% of the test set intervals are labeled no-confusion.

• AUC: The area under the Receiver Operating Characteristic
(ROC) curve, representing the true positive rate against the
false positive rate.

• Precision (PR): Number of correctly identified confusion inter-
vals (true positive) divided by the total number of intervals
classified as confusion (true positive + false positive).

• Recall Given 90% Precision (R-90PR): In the context of an AI
assistant, achieving high precision is crucial because mistak-
enly intervening when a user did not actually need help can
significantly disrupt and frustrate the user [12, 34]. There-
fore, an understanding of expected recall when a system is
tuned for high precision is informative.

5.3 Results
5.3.1 Within-Task Tests. To evaluate the performance of models
leveraging various knowledge sources—behavioral, instructions,
video, temporal—we employed five-fold cross-validation in our
within-task tests. We created five different models, each trained
on four of the folds. Then, we evaluated each of these models

Table 1: Performance of models combining features from
various sources of information (within-task). Metrics are
accuracy (ACC), area under the curve (AUC), precision (PR),
and recall given 90% precision (R-90PR). Non-video models
are EBMs. Video models use the V-Jepa architecture. Values
represent an average across each training fold computed on
the test set. Statistical significance (p-values adjusted using
Benjamini-Hochberg correction) is reported where * is p =
.05, ** p = .01, and *** is p < .001. A human annotator baseline
(on 100 test examples) is also reported.

Within-Task
ACC AUC PR R-90PR

Human (𝜅 = 0.837, 𝑝 < .001) 0.91 N/A 0.925 N/A

Mann-Whitney U Test (Comparing to Behavior)

Behavior 0.738 0.767 0.626 0.053
Time 0.671** 0.626** 0** 0*

Instruction Embedding 0.732 0.765 0.612 0.071
Time + Instruction Embedding 0.806** 0.838** 0.739** 0.391**

Behavior + Time 0.744 0.780 0.630 0.059
Behavior + Time + Instruction 0.811** 0.858** 0.737** 0.440**

Mann-Whitney U Test (Comparing to Behavior + Time + Instruction)

Video (V-Jepa) 0.806 0.865 0.716 0.378
ALL (Late Fusion) 0.811 0.858 0.738 0.432
ALL (Concatenate) 0.811 0.858 0.715 0.282

Table 2: Performance of EBM models trained on various sub-
sets of behavioral features and temporal segments (within-
task). Each row indicates which features were included in the
model. The four metrics are accuracy (ACC), area under the
curve (AUC), precision (PR), and recall given 90% precision
(R-90PR). In bold are the highest values for each metric.

Within-Task
ACC AUC PR R-90PR

All Behavior 0.738 0.767 0.626 0.053
Gaze Only 0.692 0.685 0.542 0.002
Head Only 0.654 0.605 0.443 0.001
Hands Only 0.728 0.731 0.637 0.040
Gaze + Head 0.697 0.703 0.549 0.005
Gaze + Hands 0.739 0.765 0.633 0.070Be

ha
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or

U
se
d

Head + Hands 0.725 0.727 0.616 0.023
Full Interval 0.696 0.692 0.559 0.280

First Two Seconds 0.678 0.600 0.560 0.002
Last Two Seconds 0.710 0.696 0.595 0.004

Full + First 0.705 0.703 0.572 0.023
Full + Last 0.723 0.757 0.594 0.026Te

m
po

ra
l

U
se
d

First + Last 0.719 0.732 0.601 0.011

on the test set. We compared the results across inputs using a
Mann-Whitney U Test, adjusted for multiple comparisons with the
Benjamini-Hochberg correction.We specifically examined how low-
dimensional inputs (time, text, behavior) compared to performance
using only behavioral signals, to understand their contributions to
confusion detection. This analysis also aimed to determine how con-
textualizing behavioral signals affects performance. Additionally,
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we assessed heavier weight computationally intensive video-based
models (V-Jepa), combining with other modalities, against the best
performing set of non-video lightweightmodels. Finally, to establish
an upper bound of performance for this problem space, we asked
two naive coders to annotate a subset of 100 test intervals. They
annotated each interval by watching the video (no audio), along
with the text transcript of the corresponding high-level instruction.

Table 1 illustrates each model’s average performance across
training folds. Human annotators achieved 91% accuracy, with an
intercoder reliability of Cohen’s 𝜅 = 0.84, 𝑝 < .001. All models
performed better than the majority class baseline (67.1%), with the
multimodal approach of Behavior + Time + Instructions performing
the best, statistically significantly outperforming the Behavior-only
model. The Time + Instructions model is not far behind. The Time-
only model performed the worst across all metrics. When exploring
the heavyweight video-based models, the late fusion of Video +
Behavior + Time + Instructions performed best. However, when
comparing it to that of the lighter-weight EBM model of Behavior +
Time + Instructions, there was no statistical significance across all
metrics. This lack of significant difference was consistent across all
video input-related models when compared to Behavior + Time +
Instructions. See Appendix B Table 2 for the p-values.

To understand how different behavioral features influence model
performance, we conducted several ablation tests (Table 2). For the
behavior ablation, rather than removing individual features, we
systematically removed sources of behavior: gaze, head, and hands.
During this ablation, the features still spanned across all temporal
segments. The gaze and hands modalities appeared to perform best.
The head modality by itself performed the worst. For the temporal
ablations, we removed features corresponding to each temporal
segment, but retained all behavioral features. The first two-second
segment alone had the lowest performance. The final two-second
segment showed the highest performance among the individual
segments, which is intuitive because confusion behaviors are likely
most pronounced immediately before the intervention. The most
effective temporal inputs combined features from all segments.

5.3.2 Generalizability. We also evaluated how well the models
might perform on unseen tasks. To do this, we conducted a leave-
one-task-out validation, where we tested each model’s ability to
generalize across various tasks. Table 3 shows the model’s perfor-
mance for different features (specifically the features that had the
best accuracy and precision in the within-task test) across tasks. We
found that the best models (lightweight and heavyweight) generally
had similar across-task performance. However, the performances of
each feature with respect to the tasks was highly variable. It is im-
portant to note that the amount of intervals per task vary greatly, so
the metrics reported for the tasks with few intervals—such as coffee
or RAM—might be less reliable and more susceptible to noise. The
Behavior + Time + Instructions model appeared to perform the best
on the “big printer”, “espresso”, “nespresso”, and “Nintendo Switch”
tasks. The Video model performs the best on “DSLR”, “graphics
card”, “Navvis”, and “RAM” tasks. The Video + Behavior + Time +
Instructions model performs the best on “belt”, “circuit breaker”,
and “GoPro” tasks. See Appendix C Table 3 for additional results for
the Behavior and Time + Instructions inputs. In summary, Behavior
appears to generalize better to new tasks than Time + Instructions.

6 Discussion
In this paper, we explored how intervals of confusion might be
detected in physical tasks, with the ultimate aim of modeling this
cognitive state for potential real-time detection during task exe-
cution. Detecting and modeling confusion is a difficult problem
with many factors, such as confusion type, task context, and how a
person implicitly expresses confusion. Our goal is to create a model
that captures these subtle signs and can be used across different
tasks. We highlight the important role that observing human behav-
ior plays in understanding confusion and discuss the advantages of
using a multimodal approach that considers both behavioral signals
and other contextual features.

6.1 Confusion is Complex
Understanding and modeling confusion is a difficult problem. Re-
sults from the within-task test (training and testing on all tasks
together) showed that the best performing model achieved about
81.1% accuracy (AUC = 0.858, precision = 0.737). Even with a state-
of-the-art video-based model (V-Jepa) over high-dimensional fea-
tures (egocentric video clips), we achieved an accuracy of only
80.6% (AUC = 0.865, precision = 0.716). The performance of both
the lighter-weight models with lower dimensional features and
the heavier-weight model with higher dimensional features for
the simplified problem space underpins the intrinsic complexity of
modeling confusion during physical tasks.

This complexity might partially stem from the fact that a human
can experience different types of confusion for the same task and in-
struction, where behavioral patterns can be completely different. In
addition, the complexity could also stem from the variability in how
confusion can manifest across disparate tasks. As evidenced by our
between-task tests, there is considerable performance variability
across tasks irrespective of the feature type.

6.2 Using Behavioral Features
Regardless of task, humans seem to consistently signal their confu-
sion through their behavior. Gaze, hand, and head features were all
significantly different between confusion and no-confusion intervals.
For example, we observed trends of increased gaze and left-hand
activity, with faster angular head movements in confusion intervals.
These observations were also reflected when it came to training
confusion classification models from these signals (see Table 1).
Within-task tests revealed that we are able to detect confusion us-
ing behavioral signals. In fact, when contextualized (e.g., Behavior +
Time + Instructions), they deliver performance comparable to that of
video-based, computationally intensive methods across all metrics.

Generalizability: Evaluating these models across task is also
important when considering that AI assistants will need to be able
to generalize their abilities to tasks unseen during training time. The
results from the between-task test show that the best performing
models, both lightweight behavior-based and heavyweight video-
based, have the potential to generalize to unseen physical tasks (see
Appendix C and Table 3).

6.3 Benefits of Multimodal Approach
A multimodal approach, combining behavioral signals with other
contextual features, has the potential to improve the estimation of
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Table 3: Performance of the three best features from the within-task test in generalizing across task types. Metrics are accuracy
(ACC), area under the curve (AUC), precision (PR), and recall given 90% precision (R-90PR). Results were computed using
leave-one-task-out. The bold numbers were the highest numbers for each metric and task.

Lightweight
Behavior + Time + Instructions

Heavyweight
Video

Combined
Video + Behavior + Time + Instructions

ACC AUC PR R-90PR ACC AUC PR R-90PR ACC AUC PR R-90PR
ATV 0.400 0.364 0.188 0 0.633 0.631 0.364 0 0.600 0.670 0.389 0
Belt 0.727 0.713 0.231 0.200 0.568 0.651 0.182 0 0.705 0.769 0.250 0.200
Big Printer 0.613 0.899 0.426 0.565 0.525 0.661 0.358 0.130 0.538 0.712 0.370 0.391
Circuit Breaker 0.675 0.500 0.182 0 0.675 0.598 0.182 0.167 0.800 0.721 0.500 0.500
Coffee 0.778 0.778 1 0.333 0.778 0.667 1 0.333 0.778 0.556 1 0.333
DSLR 0.621 0.644 0.237 0.094 0.526 0.727 0.241 0.031 0.389 0.709 0.200 0.188
Espresso 0.889 0.986 0.750 0.857 0.963 0.907 1 0.857 0.852 0.914 0.667 0.286
Gopro 0.747 0.795 0.722 0.232 0.785 0.862 0.775 0.089 0.823 0.900 0.868 0.392
Graphics Card 0.595 0.650 0.278 0.111 0.738 0.731 0.429 0 0.690 0.721 0.357 0
Navvis 0.680 0.507 1 0.111 0.760 0.833 1 0.556 0.640 0.802 0.500 0.111
Nespresso 0.686 0.679 0.640 0 0.549 0.583 0.500 0.087 0.627 0.691 0.600 0.130
RAM 0.621 0.461 0.250 0 0.793 0.877 0.556 0.571 0.655 0.643 0.385 0
Small Printer 0.636 0.775 0.865 0.318 0.607 0.781 0.962 0.606 0.664 0.815 0.941 0.591
Switch 0.746 0.840 0.739 0.468 0.713 0.791 0.652 0.278 0.773 0.837 0.711 0.405

human cognitive states. Our results demonstrate that combining
behavioral signals with time and instruction embeddings yields the
best confusion detection performance, irrespective of the task.

Part of the reason why adopting a multimodal approach is im-
portant for detecting confusion in physical tasks is that confusion
seems to have a strong prior. The Time + Instructionsmodel was suc-
cessful for confusion detection—better than behavioral signals alone.
This performance shows us that some instructions are, by default,
inherently more prone to confusion than others. While behavioral
signals vary based on the person, task, and human cognitive state,
the text feature captures a consistent underlying tendency towards
confusion. Therefore, combining Instructions and behavioral signals
facilitates improved confusion detection, as the instruction embed-
dings provide a stable prior, while behavioral signals introduce
variability as well as enabling streaming. It is important to note that
Time + Instructions alone, while having good confusion detection
performance, would be insufficient for deployment because that
input can only be used to detect the “potential” for an instruction to
be confusing. This alone is not useful for just-in-time intervention.
However, behavioral signals can help models detect the onset of
confusion in its early stages, enabling preemptive interventions and
support before the user experience is significantly affected [49].

6.4 Future Work and Limitations
As our results have shown, detecting and modeling confusion is a
complex problem, which highlights the fact that several different
factors need to be considered when modeling human cognitive
states during task execution. Future work should explore why cer-
tain tasks were not successfully generalized to, such as analyzing if
the complexity, physicality, or cognitive demand of the task corre-
lates with generalization capability.

Future work should also address transitioning our approach to a
real-time streaming paradigm, allowing for just-in-time feedback
during physical task execution. One potential strategy using our

model in real-time could involve classifying segments up to the
current frame to determine if the participant is confused at that
point and developing policies to decide when and how the AI should
intervene. Then the streaming model could be integrated into an AI
assistant displayed via augmented reality (e.g., [6]), which has been
shown to be a promising technology for interactively delivering
instructions for complex physical tasks, by lowering user mental
demand and reducing error rate during task execution [8, 52].

One limitation for this work is that all of these tasks are de-
pendent on instructions provided by an instructor. However, not
all physical tasks are structured or dependent on instructions in
that way. Confusion detection should be explored outside of highly
structured tasks and consider the performance of different features.

Another limitation arises from how the confusion ground truth
labels for the HoloAssist dataset were derived: they were indirectly
inferred based on the overt behaviors of the participants. Future in-
vestigations might explore other approaches for accurately labeling
confusion in datasets, ensuring robustness and reliability.

Work in the area of confusion and physical tasks should expand
beyond just detection to other areas of confusion management: clas-
sification, severity assessment, and mitigation. Future work should
classify confusion types to select appropriate mitigation strategies.
For example, if an AI assistant system interacts with a user through
an augmented reality headset and the user is confused about an
object’s location, the system could generate holograms to point to
different object locations. Additionally, we should consider how to
implement escalating mitigation interventions if the confusion per-
sists [28]. This adaptive strategy would enhance an AI assistance’s
ability to navigate the nuances of confusion during task execution
and enhance user experience and performance in real-time.
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A STATISTICAL ANALYSIS OF BEHAVIORAL
SIGNAL FEATURES

In order to determine the effect that confusion has on implicit be-
havioral signals exhibited by participants, we evaluated the dataset
usingMann-Whitney U tests and controlling for false discovery rate
through Benjamini-Hochberg test. Table 1 displays the numerical
values of the Mann-Whitney U tests ran for all of the handcrafted
low-level behavioral features extracted, as described in Section 4.

B WITHIN-TASK TEST STATISTICAL TESTS
Table 2 shows the Mann-Whitney U test values calculated for com-
paring model performance in the within-task test.

C ADDITIONAL RESULTS FOR THE
BETWEEN-TASK TEST

Table 3 contains the results of the between-task test for the Behavior
and Time + Instructions inputs.
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Table 1: Mann-Whitney U test values (accounting for false discovery rate using Benjamini-Hochberg correction) used to evaluate
the significance of behavioral signal features with respect to confusion and no-confusion intervals. The tests were conducted on
the full execution intervals. The bolded features exhibited statistically significant differences across interval type.

Confusion Interval
Mean

No-confusion Interval
Mean Mann-Whitney U Test

Fixations Per Second 1.22 ± 0.61 1.09 ± 0.55 U = 2495054, p < .001
Average Completed Fixation Duration 0.76 ± 0.88 0.92 ± 0.96 U = 3276030, p < .001
SD Completed Fixation Duration 0.60 ± 0.74 0.85 ± 1.00 U = 3359105, p < .001
Percent Interval Fixation Overlap 0.80 ± 0.16 0.82 ± 0.14 U = 2993328, p = .0038
Average Gaze Speed 0.56 ± 0.51 0.49 ± 0.38 U = 2363822, p < .001

Ga
ze

SD Gaze Speed 1.12 ± 1.05 1.10 ± 1.08 U = 2626381, p < .001
Average Head Linear Speed 0.084 ± 0.092 0.067 ± 0.077 U = 2499418, p < .001
SD Head Linear Speed 0.069 ± 0.066 0.06 ± 0.061 U = 2603831, p < .001
Average Head Angular Speed 0.22 ± 0.17 0.19 ± 0.15 U = 2566847, p < .001H

ea
d

SD Head Angular Speed 0.17 ± 0.14 0.17 ± 0.306 U = 2705490, p = .011
Average Left Index Speed 1.9 ± 20.4 1.57 ± 13.8 U = 2597784, p < .001
SD Left Index Speed 5.65 ± 34.6 5.90 ± 29.7 U = 2708021, p = .013
Average Left Index DistHead 0.48 ± 0.15 0.47 ± 0.17 U = 2882610, p = .51
SD Left Index DistHead 0.06 ± 0.17 0.075 ± 0.97 U = 2717302, p = .021
Average Left Thumb Speed 1.86 ± 20.4 1.53 ± 13.8 U = 2577204, p < .001
SD Left Thumb Speed 5.59 ± 34.6 5.84 ± 29.7 U = 2688697, p = .0042
Average Left Thumb DistHead 0.46 ± 0.14 0.45 ± 0.16 U = 2844762, p = .94
SD Left Thumb DistHead 0.056 ± 0.17 0.071 ± 0.97 U = 2696553, p = .0067
Average Left Wrist Speed 1.79 ± 20.4 1.48 ± 13.8 U = 2588481, p < .001
SD Left Wrist Speed 5.49 ± 34.5 5.76 ± 29.7 U = 2683223, p = .0033
Average Left Wrist DistHead 0.44 ± 0.13 0.44 ± 0.15 U = 2870304, p = .69

Le
ft
H
an
d

SD Left Wrist DistHead 0.044 ± 0.17 0.061 ± 0.97 U = 2746217, p = .079
Average Right Index Speed 1.29 ± 7.14 1.33 ± 6.70 U = 2722990, p = .026
SD Right Index Speed 4.55 ± 16.2 6.02 ± 24.8 U = 2820876, p = .81
Average Right Index DistHead 0.50 ± 0.12 0.50 ± 0.141 U = 2892744, p = .39
SD Right Index DistHead 0.061 ± 0.053 0.065 ± 0.21 U = 2854810, p = .83
Average Right Thumb Speed 1.25 ± 7.12 1.29 ± 6.69 U = 2729467, p = .036
SD Right Thumb Speed 4.50 ± 16.2 5.97 ± 24.8 U = 2829903, p = .89
Average Right Thumb DistHead 0.48 ± 0.12 0.48 ± 0.14 U = 2866402, p = .73
SD Right Thumb DistHead 0.058 ± 0.053 0.062 ± 0.21 U = 2843412, p = .94
Average Right Wrist Speed 1.18 ± 7.05 1.23 ± 6.68 U = 2721788, p = .026
SD Right Wrist Speed 4.39 ± 16.1 5.87 ± 24.8 U = 2817821, p = .79
Average Right Wrist DistHead 0.46 ± 0.10 0.46 ± 0.13 U = 2857312, p = .81

Ri
gh

tH
an
d

SD Right Wrist DistHead 0.044 ± 0.048 0.050 ± 0.21 U = 2932962, p = .079
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Table 2: Mann-Whitney U test values (accounting for false discovery rate using Benjamini-Hochberg correction) used to evaluate
the difference in model performances for the within-task tests.

Mann-Whitney U Test
ACC AUC PR R-90PR

Mann-Whitney U Test (Comparing to Behavior)

Time U = 1, p = .014 U = 1, p = .014 U = 1, p = .013 U = 2.5, p = .034
Time + Instruction U = 25, p = .017 U = 25, p = .014 U = 25, p = .014 U = 25, p = .014
Behavior + Time U = 17, p = .39 U = 21, p = .12 U = 15, p = .69 U = 15, p = 69

Behavior + Time + Instruction U = 25, p = .017 U = 25, p = .014 U = 25, p = .014 U = 25, p = .014
Mann-Whitney U Test (Comparing to Behavior + Time + Instruction)

Video (V-Jepa) U = 6.5, p = .50 U = 20, p = .49 U = 3, p = .33 U = 6, p = .50
ALL (Late Fusion) U = 11, p = .92 U = 12, p = .98 U = 13, p = .98 U = 10, p = .97
ALL (Concatenate) U = 11, p = .92 U = 11, p = .84 U = 6, p = .50 U = 1, p = .33

Table 3: Performance of the Behavior and Time + Instructions in generalizing across physical task (between-task test). The four
metrics were accuracy (ACC), area under the curve (AUC), precision (PR), and recall given 90% precision (R-90PR). Results were
computed using leave-one-out combination for each task. The bold numbers were the highest numbers for each metric and
task.

Behavior Time + Instructions
ACC AUC PR R-90PR ACC AUC PR R-90PR

ATV 0.667 0.574 0.333 0.250 0.433 0.341 0.200 0
Belt 0.682 0.692 0.154 0 0.727 0.646 0.230 0
Big Printer 0.775 0.783 0.6 0.174 0.575 0.839 0.403 0.261
Circuit Breaker 0.600 0.475 0.083 0.167 0.425 0.412 0.130 0
Coffee 0.667 0.889 0 0.667 0.778 0.861 1 0.667
DSLR 0.584 0.688 0.247 0.031 0.579 0.548 0.200 0.094
Espresso 0.852 0.793 0.714 0 0.889 0.871 0.833 0.714
Gopro 0.753 0.853 0.870 0.268 0.690 0.737 0.595 0.232
Graphics Card 0.571 0.556 0.200 0 0.535 0.556 0.25 0.111
Navvis 0.480 0.549 0.167 0 0.680 0.667 1 0.111
Nespresso 0.607 0.611 0.667 0.043 0.647 0.689 0.619 0
RAM 0.655 0.552 0.364 0.043 0.621 0.532 0.167 0
Small Printer 0.570 0.739 0.828 0 0.561 0.718 0.778 0.303
Switch 0.635 0.850 0.667 0 0.785 0.723 0.803 0.519
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